RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Magnetization dynamics induced by the Rashba effect in ferromagnetic films

        Yu, Zhizhou,Chen, Jian,Zhang, Lei,Xing, Yanxia,Wang, Jian The Royal Society of Chemistry 2018 Nanoscale Vol.10 No.39

        <P>Manipulating the magnetization of ferromagnets by the current-induced spin-orbit torque has great potential application in the design of low energy consumption spintronic devices. Normally, an external magnetic field is needed for the reversal of current assisted magnetization by the spin-orbit torque. Recently, the switching of magnetization driven by the spin-orbit torque in the absence of an external magnetic field was reported in a Ta/Co20Fe60B20/TaOxsystem with lateral structural asymmetry. To understand the physics behind this experiment, we performed first principles calculations on the potential profile at the interface between the ferromagnetic film and the wedge-shaped deposited metal oxide in the Ta/Co/TaO system. This revealed that the lateral structural asymmetry generates two additional Rashba interactions which can reduce the minimum external field required to reverse the magnetization. In addition, we derived the Landau-Lifshitz-Gilbert equation from a quantum transport perspective and numerically investigated the magnetization dynamics in ferromagnetic films induced by Rashba interactions including those generated by lateral asymmetry. Our theoretical simulation provides microscopic explanations of experimental observations of magnetization switching in the absence of an external field of devices with lateral structural asymmetry.</P>

      • KCI등재

        A Compact Dual-Band MIMO Antenna for Sub-6 GHz 5G Terminals

        Dong Guiting,Huang Jianlin,Lin Simin,Chen Zhizhou,Liu Gui 한국전자파학회 2022 Journal of Electromagnetic Engineering and Science Vol.22 No.5

        In this paper, a dual-band multiple-input-multiple-output (MIMO) antenna is proposed for fifth-generation (5G) wireless communication terminals. The measured -10 dB impedance bandwidths of 380 MHz (3.34–3.72 GHz) and 560 MHz (4.57–5.13 GHz) can cover the 3.4–3.6 GHz and 4.8–5 GHz 5G bands. The single antenna element of this proposed MIMO is composed of an F-shaped feed strip and an inverted L-shaped radiation strip. A defected ground structure is employed to obtain a good isolation performance, whereby the measured isolation between the antenna elements is observed to be larger than 23 dB. The measured total radiation efficiencies at 3.5 GHz and 4.9 GHz are 76.65% and 71.93%, respectively. Besides, the calculated envelope correlation coefficients (ECC) are less than 0.00125 and 0.01164 at the low-frequency and high-frequency bands, respectively. Furthermore, the specific absorption ratio (SAR) analysis of the antenna verifies that it qualifies for 5G terminals.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼