RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Simultaneous removal of Cr(VI) and phenol from synthetic binary solution using consortium culture of Bacillus sp. and E. coli immobilized on tea waste biomass in packed bed reactor

        Ankur Gupta,Chandrajit Balomajumder 한국화학공학회 2016 Korean Journal of Chemical Engineering Vol.33 No.2

        A continuous bio column reactor was designed for the simultaneous bioaccumulation of Cr(VI) and biodegradation of phenol from their binary synthetic solution with the ratio of (2 : 1). Consortium culture of Bacillus sp. and Escherichia coli was immobilized onto tea waste biomass in the packed bed column. The metabolites formed during the biodegradation of phenol by Bacillus sp. were utilized by Escherichia coli for the bioaccumulation of Cr(VI). The considerable effect of empty bed contact time (EBCT), bed height (cm) and flow rate (mL/min) was investigated onto the simultaneous removal of Cr(VI) and phenol in the column reactor. However, after 3-4 days of continuous treatment of Cr(VI) and phenol the effect of these process parameters was not significant. Dissolved oxygen (DO) of effluent has been found to decrease with run time of packed bed column. The pH of the effluent decreased initially for 2 days but after that it became the same as the influent. A mass transfer study was carried out to calculate the pseudofirst- order rate constant for Cr(VI) and phenol, which was in good agreement with experimental results.

      • KCI등재

        Fabrication of magnetic cobalt ferrite nanocomposites: an advanced method of removal of toxic dichromate ions from electroplating wastewater

        Bharti Verma,Chandrajit Balomajumder 한국화학공학회 2020 Korean Journal of Chemical Engineering Vol.37 No.7

        Magnetic cobalt ferrites (CoFe2O4) were synthesized by sol-gel method. These nanoparticles were ultra-sonicated with surface modified multi-walled carbon nanotubes (SM-MWCNTs) to form CoFe2O4/SM-MWCNTs nanocomposites. The as-prepared materials were used as an adsorbent for the removal of hexavalent chromium (Cr(VI)) arising from the presence of dichromate ions (Cr2O7 2) in the electroplating effluent. The synthesized nanocomposites were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-Ray diffraction (XRD), Fourier transmission infrared spectroscopy (FT-IR), raman spectroscopy, thermo-gravimetric analysis (TGA), and zeta analyzer. The effect of the environmental chemistry of the solution on the adsorption has been discussed. The adsorption isotherm of Cr(VI) adsorption onto the as-synthesized CoFe2O4/SM-MWCNTs best fitted the Langmuir Adsorption Isotherm model. The high adsorption capacity of 100mg/g was achieved at 40oC under optimized conditions. Besides, the magnetic properties of synthesized CoFe2O4/SM-MWCNTs nanocomposites allow them to separate from the aqueous solution by magnetization easily. Even after seven consecutive adsorption-desorption cycles, the CoFe2O4/SM-MWCNTs nanocomposites presented an efficiency loss of less than 20% for the removal of Cr(VI) ions. This study clearly shows that cobalt nanocomposites are promising candidates in environmental applications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼