RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Physics informed neural networks for surrogate modeling of accidental scenarios in nuclear power plants

        Antonello Federico,Buongiorno Jacopo,Zio Enrico 한국원자력학회 2023 Nuclear Engineering and Technology Vol.55 No.9

        Licensing the next-generation of nuclear reactor designs requires extensive use of Modeling and Simulation (M&S) to investigate system response to many operational conditions, identify possible accidental scenarios and predict their evolution to undesirable consequences that are to be prevented or mitigated via the deployment of adequate safety barriers. Deep Learning (DL) and Artificial Intelligence (AI) can support M&S computationally by providing surrogates of the complex multi-physics high-fidelity models used for design. However, DL and AI are, generally, low-fidelity ‘black-box’ models that do not assure any structure based on physical laws and constraints, and may, thus, lack interpretability and accuracy of the results. This poses limitations on their credibility and doubts about their adoption for the safety assessment and licensing of novel reactor designs. In this regard, Physics Informed Neural Networks (PINNs) are receiving growing attention for their ability to integrate fundamental physics laws and domain knowledge in the neural networks, thus assuring credible generalization capabilities and credible predictions. This paper presents the use of PINNs as surrogate models for accidental scenarios simulation in Nuclear Power Plants (NPPs). A case study of a Loss of Heat Sink (LOHS) accidental scenario in a Nuclear Battery (NB), a unique class of transportable, plug-and-play microreactors, is considered. A PINN is developed and compared with a Deep Neural Network (DNN). The results show the advantages of PINNs in providing accurate solutions, avoiding overfitting, underfitting and intrinsically ensuring physics-consistent results

      • KCI등재

        A central facility concept for nuclear microreactor maintenance and fuel cycle management

        Fakhry Faris,Buongiorno Jacopo,Rhyne Steve,Cross Benjamin,Roege Paul,Landrey Bruce 한국원자력학회 2024 Nuclear Engineering and Technology Vol.56 No.3

        Commercial deployment of nuclear microreactors presents an opportunity for the industry to rethink its approach to manufacturing, siting, operation and maintenance, and fuel cycle management as certain principles used in grid-scale nuclear projects are not applicable to a decentralized microreactor economy. The success of this nascent industry is dependent on its ability to reduce infrastructure, logistical, regulatory and lifecycle costs. A utility-like ‘Central Facility’ that consolidates the services required and responsibilities borne by vendors into one or a few centralized locations will be necessary to support the deployment of a fleet of microreactors. This paper discusses the requirements for a Central Facility, its implications on the cost structures of owners and suppliers of microreactors, and the impact of the facility for the broader microreactor industry. In addition, this paper discusses the pre-requisites for eligibility as well as the opportunities for a Central Facility host site. While there are many suitable locations for such a capability across the U.S., this paper considers a facility co-located with the Vogtle Nuclear Power Plant and Savannah River Sites to illustrate how a Central Facility can leverage the existing infrastructure and stimulate a local ecosystem.

      • KCI등재

        Technology Selection for Offshore Underwater Small Modular Reactors

        Koroush Shirvan,Ronald Ballinger,Jacopo Buongiorno,Charles Forsberg,Mujid Kazimi,Neil Todreas 한국원자력학회 2016 Nuclear Engineering and Technology Vol.48 No.6

        This work examines the most viable nuclear technology options for future underwaterdesigns that would meet high safety standards as well as good economic potential, forconstruction in the 2030-2040 timeframe. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor(PWR) designed with a conventional layout. In order of smallest to largest primary systemsize where the reactor and all safety systems are contained, the top five designs were: (1) aleadebismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooledreactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based onToshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similarstudy on potential attractive power cycles was also performed. A condensing and recompressionsupercritical CO2 cycle and a compact steam Rankine cycle were designed. It wasfound that the hull size required by the reactor, safety systems and power cycle can besignificantly reduced (50-80%) with the top five designs compared to the conventionalPWR. Based on the qualitative economic consideration, the organic cooled reactor andboiling water reactor designs are expected to be the most cost effective options.

      • KCI등재

        Consequence-based security for microreactors

        Gateau Emile,Todreas Neil,Buongiorno Jacopo 한국원자력학회 2024 Nuclear Engineering and Technology Vol.56 No.3

        Assuring physical security for Micro Modular Reactors (MMRs) will be key to their licensing. Economic constraints however require changes in how the security objectives are achieved for MMRs. A promising new approach is the so-called performance based (PB) approach wherein the regulator formally sets general security objectives and leaves it to the licensee to set their own specific acceptance criteria to meet those objectives. To implement the PB approach for MMRs, one performs a consequence-based analysis (CBA) whose objective is to study hypothetical malicious attacks on the facility, assuming that intruders take control of the facility and perform any technically possible action within a limited time before an offsite security force can respond. The scenario leading to the most severe radiological consequences is selected and studied to estimate the limiting impact on public health. The CBA estimates the total amount of radionuclides that would be released to the atmosphere in this hypothetical scenario to determine the total radiation dose to which the public would be exposed. The predicted radiation exposure dose is then compared to the regulatory dose limit for the site. This paper describes application of the CBA to four different MMRs technologies.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼