RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Multivariate Machine Learning Methods for Fusing Multimodal Functional Neuroimaging Data

        Dahne, Sven,Biessmann, Felix,Samek, Wojciech,Haufe, Stefan,Goltz, Dominique,Gundlach, Christopher,Villringer, Arno,Fazli, Siamac,Muller, Klaus-Robert IEEE 2015 Proceedings of the Institute of Electrical and Ele Vol.103 No.9

        <P>Multimodal data are ubiquitous in engineering, communications, robotics, computer vision, or more generally speaking in industry and the sciences. All disciplines have developed their respective sets of analytic tools to fuse the information that is available in all measured modalities. In this paper, we provide a review of classical as well as recent machine learning methods (specifically factor models) for fusing information from functional neuroimaging techniques such as: LFP, EEG, MEG, fNIRS, and fMRI. Early and late fusion scenarios are distinguished, and appropriate factor models for the respective scenarios are presented along with example applications from selected multimodal neuroimaging studies. Further emphasis is given to the interpretability of the resulting model parameters, in particular by highlighting how factor models relate to physical models needed for source localization. The methods we discuss allow for the extraction of information from neural data, which ultimately contributes to 1) better neuroscientific understanding; 2) enhance diagnostic performance; and 3) discover neural signals of interest that correlate maximally with a given cognitive paradigm. While we clearly study the multimodal functional neuroimaging challenge, the discussed machine learning techniques have a wide applicability, i.e., in general data fusion, and may thus be informative to the general interested reader.</P>

      • Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals

        Jeong-Hun Kim,Biessmann, Felix,Seong-Whan Lee IEEE 2015 IEEE transactions on neural systems and rehabilita Vol.23 No.5

        <P>Decoding motor commands from noninvasively measured neural signals has become important in brain-computer interface (BCI) research. Applications of BCI include neurorehabilitation after stroke and control of limb prostheses. Until now, most studies have tested simple movement trajectories in two dimensions by using constant velocity profiles. However, most real-world scenarios require much more complex movement trajectories and velocity profiles. In this study, we decoded motor commands in three dimensions from electroencephalography (EEG) recordings while the subjects either executed or observed/imagined complex upper limb movement trajectories. We compared the accuracy of simple linear methods and nonlinear methods. In line with previous studies our results showed that linear decoders are an efficient and robust method for decoding motor commands. However, while we took the same precautions as previous studies to suppress eye-movement related EEG contamination, we found that subtracting residual electro-oculogram activity from the EEG data resulted in substantially lower motor decoding accuracy for linear decoders. This effect severely limits the transfer of previous results to practical applications in which neural activation is targeted. We observed that nonlinear methods showed no such drop in decoding performance. Our results demonstrate that eye-movement related contamination of brain signals constitutes a severe problem for decoding motor signals from EEG data. These results are important for developing accurate decoders of motor signal from neural signals for use with BCI-based neural prostheses and neurorehabilitation in real-world scenarios.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼