RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Learning and Leveraging Conventions in the Design of Haptic Shared Control Paradigms for Steering a Ground Vehicle

        Vahid Izadi,Amir H. Ghasemi 제어·로봇·시스템학회 2023 International Journal of Control, Automation, and Vol.21 No.10

        The main objective of this paper is to establish a framework to study the co-adaptation between humans and automation systems in a haptic shared control framework. We specifically used this framework to design control transfer strategies between humans and automation systems to resolve a conflict when co-steering a semi-automated ground vehicle. The proposed framework contains three main parts. First, we defined a modular structure to separate partner-specific strategies from task-dependent representations and use this structure to learn different co-adaption strategies. In this structure, we assume the human and automation steering commands can be determined by optimizing cost functions. For each agent, the costs are defined as a combination of a set of hand-coded features and vectors of weights. The hand-coded features can be selected to describe task-dependent representations. On the other hand, the weight distributions over these features can be used as a proxy to determine the partner-specific conventions. Second, to leverage the learned co-adaptation strategies, we developed a map connecting different strategies to the outputs of human-automation interactions by employing a collaborative-competitive game concept. Finally, using the map, we designed an adaptable automation system capable of co-adapting to human driver’s strategies. Specifically, we designed an episode-based policy search using the deep deterministic policy gradients technique to determine the optimal weights vector distribution of automation’s cost function. The simulation results demonstrate that the handover strategies designed based on co-adaption between human and automation systems can successfully resolve a conflict and improve the performance of the human automation teaming.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼