RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        국내 연안 카페리 차량 고박 장치 안전성에 관한 연구 제1부

        정준모(Joonmo Choung),조희상(Huisang Jo),이경훈(Kyunghoon Lee),이영우(Young Woo Lee) 한국해양공학회 2016 韓國海洋工學會誌 Vol.30 No.6

        The capsizing and consequent sinking of a coastal car ferry was recently reported, with numerous human casualties. The primary cause was determined to be a sudden turn with improperly stowed and secured cargo. Part I of this study introduces how long term acceleration components are determined from seakeeping analyses. A carferry with a displacement of 1,633 tonf was selected as the target vessel. Sea data that included the significant wave heights and periods were collected at four observation buoys, some of which were far away from two main voyage routes: Incheon-Jeju and Pusan-Jeju. Frequency response analyses were performed to obtain the linearized radiation force coefficients, hydrostatic stiffnesses, and wave excitation forces. Time response analyses were sequentially performed to produce the motion-induced acceleration processes. The probabilistic distributions of the acceleration components were determined using a peak and valley counting method. Long term extreme acceleration components were proposed as a final result.

      • KCI등재

        국내 연안 카페리 차량 고박 장치 안전성에 관한 연구 제2부

        정준모(Joonmo Choung),조희상(Huisang Jo),이경훈(Kyunghoon Lee),이영우(Young Woo Lee) 한국해양공학회 2016 韓國海洋工學會誌 Vol.30 No.6

        For a carferry with a displacement of 1,633 tonf, a seakeeping analysis-based direct load approach (DLA) was used in Part I of these series, where the final deliverable was the long-term probabilistic acceleration components. In Part II of these series, the tangential acceleration components are explained based on two approaches: a standard called the IMO CSS code and simple formulas with the probable maximum roll and pitch rotations. The subsequent tangential acceleration-induced external force components are also introduced for these two approaches. The lashing strength components were selected from the IMO CSS code. It was assumed that two different vehicles (a car and a truck) were stowed at the most distant locations on the main deck to assume the largest tangential acceleration components and were secured with four steel wires with longitudinal and transverse lashing angles of 45∘. Four cases were considered, with different methods for predicting the acceleration components and different tools for the external loads and lashing strengths involved: cases Rule-LS (rule-based maximum probable roll and pitch angles for predicting the acceleration components in conjunction with LashingSafety), DLA-LS (seakeeping-based long-term acceleration components with LashingSafety), CSS-LC (IMO CSS code-based acceleration components using LashCon), and CSS-LS (IMO CSS code-based acceleration components using LashingSafety). In terms of the acceleration and external force components, the CSS-LC and CSS-LS results are more than two times the results of Rule-LS. Thus, when the external forces and lashing strengths are evaluated using CSS-LC and CSS-LS, the truck needs more lashing wires, while Rule-LS and DLA-LS predict that the present lashing configuration is on the safe side.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼