RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        리튬 이차전지 제조 공정으로부터 발생한 리튬 폐액의 재활용을 위한 전기 투석 수처리 장치의 리튬 농축 효율에 관한 연구

        한덕현 ( Deokhyun Han ),정항철 ( Hangchul Jung ),김보람 ( Boram Kim ),김대원 ( Dae-weon Kim ) 한국수처리학회 2020 한국수처리학회지 Vol.28 No.5

        The rapid market growth in recent years for eco-friendly electric vehicles and more generally, energy storage technologies, has led to an increase in demand for lithium which is a major raw material for lithium secondary batteries. The technology for producing lithium ions from lithium carbonate in seawater 25 L has been developed, but there are about 60 kinds of various ionic components, which is a difficult process, and only about 4 mg of lithium is recovered. In order to meet the demand of lithium, research is being actively conducted to recycle lithium secondary batteries that contain lithium and can be recycled as a circulating resource, but there is little research on recycling of waste liquid generated during the manufacturing process of lithium secondary batteries. Wastewater of lithium is thought to be able to efficiently concentrate lithium metal during recycling using an environmentally friendly electrodialysis water treatment process. In this study, lithium was concentrated using the electrodialysis of wastewater generated during the production of lithium-ion batteries. The efficiency of the electrodialysis varied according to the applied voltage and the volume ratio of the solution. However, due to the disadvantages of employing limited current densities, optimum conditions for the process needed to be selected. Therefore, the concentration efficiency of lithium was confirmed according to the process conditions, and optimum process conditions were derived. Lithium concentrated at the optimum conditions secured a concentration increase of about 128% compared to the initial concentration of wastewater.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼