RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Aspirin-Triggered Resolvin D1 Inhibits TGF-β1-Induced EndMT through Increasing the Expression of Smad7 and Is Closely Related to Oxidative Stress

        ( Yusheng Shu ),( Yu Liu ),( Xinxin Li ),( Ling Cao ),( Xiao Long Yuan ),( Wen Hui Li ),( Qian Qian Cao ) 한국응용약물학회 2016 Biomolecules & Therapeutics(구 응용약물학회지) Vol.24 No.2

        The endothelial-mesenchymal transition (EndMT) is known to be involved in the transformation of vascular endothelial cells to mesenchymal cells. EndMT has been confirmed that occur in various pathologic conditions. Transforming growth factor β1 (TGF-β1) is a potent stimulator of the vascular endothelial to mesenchymal transition (EMT). Aspirin-triggered resolvin D1 (ATRvD1) has been known to be involved in the resolution of inflammation, but whether it has effects on TGF-β1-induced EndMT is not yet clear. Therefore, we investigated the effects of AT-RvD1 on the EndMT of human umbilical vein vascular endothelial cells line (HUVECs). Treatment with TGF-β1 reduced the expression of Nrf2 and enhanced the level of F-actin, which is associated with paracellular permeability. The expression of endothelial marker VE-cadherin in HUVEC cells was reduced, and the expression of mesenchymal marker vimentin was enhanced. AT-RvD1 restored the expression of Nrf2 and vimentin and enhanced the expression of VE-cadherin. AT-RvD1 did also affect the migration of HUVEC cells. Inhibitory κB kinase 16 (IKK 16), which is known to inhibit the NF-κB pathway, had an ability to increase the expression of Nrf2 and was associated with the inhibition effect of AT-RvD1 on TGF-β1-induced EndMT, but it had no effect on TGF-β1-induced EndMT alone. Smad7, which is a key regulator of TGF-β/Smads signaling by negative feedback loops, was significantly increased with the treatment of AT-RvD1. These results suggest the possibility that AT-RvD1 suppresses the TGF-β1-induced EndMT through increasing the expression of Smad7 and is closely related to oxidative stress.

      • SCIESCOPUSKCI등재

        Aspirin-Triggered Resolvin D1 Inhibits TGF-β1-Induced EndMT through Increasing the Expression of Smad7 and Is Closely Related to Oxidative Stress

        Shu, Yusheng,Liu, Yu,Li, Xinxin,Cao, Ling,Yuan, Xiaolong,Li, Wenhui,Cao, Qianqian The Korean Society of Applied Pharmacology 2016 Biomolecules & Therapeutics(구 응용약물학회지) Vol.24 No.2

        The endothelial-mesenchymal transition (EndMT) is known to be involved in the transformation of vascular endothelial cells to mesenchymal cells. EndMT has been confirmed that occur in various pathologic conditions. Transforming growth factor ${\beta}1$ (TGF-${\beta}1$) is a potent stimulator of the vascular endothelial to mesenchymal transition (EMT). Aspirin-triggered resolvin D1 (AT-RvD1) has been known to be involved in the resolution of inflammation, but whether it has effects on TGF-${\beta}1$-induced EndMT is not yet clear. Therefore, we investigated the effects of AT-RvD1 on the EndMT of human umbilical vein vascular endothelial cells line (HUVECs). Treatment with TGF-${\beta}1$ reduced the expression of Nrf2 and enhanced the level of F-actin, which is associated with paracellular permeability. The expression of endothelial marker VE-cadherin in HUVEC cells was reduced, and the expression of mesenchymal marker vimentin was enhanced. AT-RvD1 restored the expression of Nrf2 and vimentin and enhanced the expression of VE-cadherin. AT-RvD1 did also affect the migration of HUVEC cells. Inhibitory ${\kappa}B$ kinase 16 (IKK 16), which is known to inhibit the NF-${\kappa}B$ pathway, had an ability to increase the expression of Nrf2 and was associated with the inhibition effect of AT-RvD1 on TGF-${\beta}1$-induced EndMT, but it had no effect on TGF-${\beta}1$-induced EndMT alone. Smad7, which is a key regulator of TGF-${\beta}$/Smads signaling by negative feedback loops, was significantly increased with the treatment of AT-RvD1. These results suggest the possibility that AT-RvD1 suppresses the TGF-${\beta}1$-induced EndMT through increasing the expression of Smad7 and is closely related to oxidative stress.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼