RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Experimental study on ZnO-TiO2 sorbents for the removal of elemental mercury

        Kunzan Qiu,Jinsong Zhou,Pan Qi,Qixin Zhou,Xiang Gao,Zhongyang Luo 한국화학공학회 2017 Korean Journal of Chemical Engineering Vol.34 No.9

        ZnO-TiO2 sorbents synthesized by an impregnation method were characterized through XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy) and EDS (Energy dispersive spectrometer) analyses. An experiment concerning the adsorption of Hg0 by ZnO-TiO2 under a simulated fuel gas atmosphere was then conducted in a benchscale fixed-bed reactor. The effects of ZnO loading amounts and reaction temperatures on Hg0 removal performance were analyzed. The results showed that ZnO-TiO2 sorbents exhibited excellent Hg0 removal capacity in the presence of H2S at 150 oC and 200 oC; 95.2% and 91.2% of Hg0 was removed, respectively, under the experimental conditions. There are two possible causes for the H2S reacting on the surface of ZnO-TiO2: (1) H2S directly reacted with ZnO to form ZnS, (2) H2S was oxidized to elemental sulfur (Sad) by means of active oxygen on the sorbent surface, and then Sad provided active absorption sites for Hg0 to form HgS. This study identifies three reasons why higher temperatures limit mercury removal. First, the reaction between Hg0 and H2S is inhibited at high temperatures. Second, HgS, as the resulting product in the reaction of mercury removal, becomes unstable at high temperatures. Third, the desulfurization reaction strengthens at higher temperatures, and it is likely that H2S directly reacts with ZnO, thus decreasing the Sad on the sorbent surfaces.

      • KCI등재

        Interplay between the Gut Microbiome and Metabolism in Ulcerative Colitis Mice Treated with the Dietary Ingredient Phloretin

        ( Jie Ren ),( Puze Li ),( Dong Yan ),( Min Li ),( Jinsong Qi ),( Mingyong Wang ),( Genshen Zhong ),( Minna Wu ) 한국미생물 · 생명공학회 2021 Journal of microbiology and biotechnology Vol.31 No.10

        A growing number of healthy dietary ingredients in fruits and vegetables have been shown to exhibit diverse biological activities. Phloretin, a dihydrochalcone flavonoid that is abundant in apples and pears, has anti-inflammatory effects on ulcerative colitis (UC) mice. The gut microbiota and metabolism are closely related to each other due to the existence of the food-gut axis in the human colon. To investigate the interplay of faecal metabolites and the microbiota in UC mice after phloretin treatment, phloretin (60 mg/kg) was administered by gavage to ameliorate dextran sulfate sodium (DSS)-induced UC in mice. Gut microbes and faecal metabolite profiles were detected by high-throughput sequencing and liquid chromatography mass spectrometry (LC-MS) analysis, respectively. The correlations between gut microbes and their metabolites were evaluated by Spearman correlation coefficients. The results indicated that phloretin reshaped the disturbed faecal metabolite profile in UC mice and improved the metabolic pathways by balancing the composition of faecal metabolites such as norepinephrine, mesalazine, tyrosine, 5-acetyl-2,4- dimethyloxazole, and 6-acetyl-2,3-dihydro-2-(hydroxymethyl)-4(1H)-pyridinone. Correlation analysis identified the relations between the gut microbes and their metabolites. Proteus was negatively related to many faecal metabolites, such as norepinephrine, L-tyrosine, laccarin, dopamine glucuronide, and 5-acetyl-2,4-dimethyloxazole. The abundance of unidentified Bacteriodales_S24-7_group was positively related to ecgonine, 15-KETE and 6-acetyl-2,3-dihydro-2- (hydroxymethyl)-4(1H)-pyridinone. The abundance of Christensenellaceae_R-7_group was negatively related to the levels of 15-KETE and netilmicin. Stenotrophomonas and 15-KETE were negatively related, while Intestinimonas and alanyl-serine were positively related. In conclusion, phloretin treatment had positive impacts on faecal metabolites in UC mice, and the changes in faecal metabolites were closely related to the gut microbiota.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼