RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Cache-Filter: A Cache Permission Policy for Information-Centric Networking

        ( Bohao Feng ),( Huachun Zhou ),( Mingchuan Zhang ),( Hongke Zhang ) 한국인터넷정보학회 2015 KSII Transactions on Internet and Information Syst Vol.9 No.12

        Information Centric Networking (ICN) has recently attracted great attention. It names the content decoupling from the location and introduces network caching, making the content to be cached anywhere within the network. The benefits of such design are obvious, however, many challenges still need to be solved. Among them, the local caching policy is widely discussed and it can be further divided into two parts, namely the cache permission policy and the cache replacement policy. The former is used to decide whether an incoming content should be cached while the latter is used to evict a cached content if required. The Internet is a user-oriented network and popular contents always have much more requests than unpopular ones. Caching such popular contents closer to the user`s location can improve the network performance, and consequently, the local caching policy is required to identify popular contents. However, considering the line speed requirement of ICN routers, the local caching policy whose complexity is larger than O(1) cannot be applied. In terms of the replacement policy, Least Recently Used (LRU) is selected as the default one for ICN because of its low complexity, although its ability to identify the popular content is poor. Hence, the identification of popular contents should be completed by the cache permission policy. In this paper, a cache permission policy called Cache-Filter, whose complexity is O(1), is proposed, aiming to store popular contents closer to users. Cache-Filter takes the content popularity into account and achieves the goal through the collaboration of on-path nodes. Extensive simulations are conducted to evaluate the performance of Cache-Filter. Leave Copy Down (LCD), Move Copy Down (MCD), Betw, ProbCache, ProbCache<sup>+</sup>, Prob(p) and Probabilistic Caching with Secondary List (PCSL) are also implemented for comparison. The results show that Cache-Filter performs well. For example, in terms of the distance to access to contents, compared with Leave Copy Everywhere (LCE) used by Named Data Networking (NDN) as the permission policy, Cache-Filter saves over 17% number of hops.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼