RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Capillary electrophoresis : theory & practice

      한글로보기

      https://www.riss.kr/link?id=M368230

      • 저자
      • 발행사항

        San Diego : Academic Press, c1992

      • 발행연도

        1992

      • 작성언어

        영어

      • 주제어
      • DDC

        574.19/285 판사항(20)

      • ISBN

        012304250X (acid-free paper)

      • 자료형태

        일반단행본

      • 발행국(도시)

        California

      • 서명/저자사항

        Capillary electrophoresis : theory & practice / edited by Paul D. Grossman, Joel C. Colburn.

      • 형태사항

        xvi, 352 p. : ill. ; 24 cm.

      • 일반주기명

        Includes bibliographical references and index.

      • 소장기관
        • 건국대학교 GLOCAL(글로컬)캠퍼스 중원도서관 소장기관정보
        • 경상국립대학교 도서관 소장기관정보
        • 경성대학교 도서관 소장기관정보
        • 계명대학교 동산도서관 소장기관정보
        • 국립중앙도서관 국립중앙도서관 우편복사 서비스
        • 서강대학교 도서관 소장기관정보 Deep Link
        • 서울대학교 중앙도서관 소장기관정보 Deep Link
        • 영남대학교 도서관 소장기관정보 Deep Link
        • 울산대학교 도서관 소장기관정보
        • 인하대학교 도서관 소장기관정보
        • 전북대학교 중앙도서관 소장기관정보
        • 충남대학교 도서관 소장기관정보 Deep Link
        • 한국과학기술원(KAIST) 학술문화관 소장기관정보
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      목차 (Table of Contents)

      • CONTENTS
      • Contributors = xiii
      • Preface = xv
      • PART Ⅰ BACKGROUND CONCEPTS
      • 1 Factors Affecting the Performance of Capillary Electrophoresis Separations : Joule Heating, Electroosmosis, and Zone Dispersion / Paul D. Grossman
      • CONTENTS
      • Contributors = xiii
      • Preface = xv
      • PART Ⅰ BACKGROUND CONCEPTS
      • 1 Factors Affecting the Performance of Capillary Electrophoresis Separations : Joule Heating, Electroosmosis, and Zone Dispersion / Paul D. Grossman
      • Ⅰ. Introduction = 3
      • Ⅱ. Joule Heating Effects = 4
      • A. Natural Convection = 4
      • B. Intracapillary Temperature Profile = 5
      • C. Overall Temperature Rise = 8
      • D. Application of Temperature Relationships = 9
      • Ⅲ. Electroosmosis = 14
      • A. The Electrical Double Layer = 15
      • B. Electroosmotic Velocity Profile = 19
      • C. Control of Electroosmosis = 22
      • Ⅳ. Zone Dispersion and Resolution = 24
      • A. Diffusion, Dispersion, and Theoretical Plates = 25
      • B. Additional Factors Contributing to Zone Dispersion = 28
      • C, Quantitative Comparison of Capillary and Traditional Electrophoresis Formats = 39
      • Appendix : List of Symbols = 41
      • References = 43
      • 2 Detection Methods in Capillary Electrophoresis / Teresa M. Olefirowicz ; Andrew G. Ewing
      • Ⅰ. Introduction = 45
      • Ⅱ. Detector Types Used in Capillary Electophoresis = 46
      • A. Ultraviolet-Absorbance Detectors = 46
      • B. Fluorescence Detectors = 53
      • C. Mass Spectrometry Detectors = 66
      • D. Amperometric Detectors = 71
      • E. Conductivity Detectors = 77
      • F. Radiometric Detectors = 79
      • G. Raman-Based Detectors = 81
      • H. Refractive-Index Detectors = 82
      • References = 84
      • 3 Quantitative Aspects of Capillary Electrophoresis Analysis / Stephen E. Moring
      • Ⅰ. Introduction = 87
      • Ⅱ. System Description and Analytical Method = 87
      • Ⅲ. Qualitative Analysis in CE = 89
      • A. Qualitative Analysis in Capillary Electrophoresis = 89
      • B. Capillary-Wall Chemistry = 91
      • C. Data Reporting = 92
      • Ⅳ. Quantitative Analysis = 93
      • A. Sampling Techniques = 93
      • B. Precision and Accuracy = 96
      • D. Quantitative Methods = 96
      • Ⅴ. Integration and Data-Reporting Devices = 100
      • A. Fundamentals = 100
      • B. Optimization of Integration = 103
      • Ⅵ. Detector Response Characteristics of Common Capillary Electrophoresis Detectors = 106
      • References = 108
      • PART Ⅱ MODES OF CAPILLARY ELECTROPHORESIS
      • 4 Free-Solution Capillary Electrophoresis / Paul D. Grossman
      • Ⅰ. Introduction = 111
      • Ⅱ. Electrophoretic Mobility = 112
      • A. Definition of Electrophoretic Mobility = 112
      • B. Relationship between Mobility and Molecular Size = 113
      • C. Effect of Buffer Ions on the Effective Charge and Mobility = 114
      • D. Measurement of Mobility = 118
      • Ⅲ. Resolution-Effect of Dispersion on Separation Performance = 120
      • Ⅳ. Selectivity = 121
      • A. Effect of Buffer pH = 121
      • B. Effect of Size and Charge = 123
      • C. Effect of Hydrophobicity = 128
      • D. Effect of Molecular Orientation = 129
      • References = 132
      • 5 Capillary Gel Electrophoresis / Robert S. Dubrow
      • Ⅰ. The Role of Capillary Gel Electrophoresis in Separation Science = 133
      • Ⅱ. Theoretical and Practical Considerations in Capillary Gel Electrophoresis = 134
      • A. Application of Hydrogels to Electrophoresis = 134
      • B. Parameters Affecting Capillary Gel Electrophoresis = 134
      • C. Sample Injection = 136
      • D. Reproducibility = 140
      • E. Column Breakdown = 140
      • Ⅲ. Current Capillary Gel Fabrication Methods = 141
      • A. Cross-Linked Polyacrylamide-Filled Capillaries = 141
      • B. Uncross-Linked Polyacrylamide-Filled Capillaries = 141
      • C. New Approaches to Capillary Gels = 144
      • Ⅳ. Separations Using Gel-Filled Capillaries = 144
      • A. Proteins and Peptides = 144
      • B. Oligonucleotide Analysis = 146
      • C. DNA Sequencing = 151
      • D. Double-Stranded DNA = 154
      • E. Chiral Molecules = 154
      • Ⅴ. Future Directions = 155
      • Appendix 1 : Karger and Cohen Gel-Fabrication Technique = 156
      • Appendix 2 : Protein Denaturation Procedure = 156
      • References = 156
      • 6 Fundamentals of Micellar Electrokinetic Capillary Chromatography / Michael J. Sepaniak ; A. Craig Powell ; David F. Swaile ; Roderic O. Cole
      • Ⅰ. Introduction = 159
      • Ⅱ. Theory = 164
      • A. Capacity Factor, Selectivity = 164
      • B. Efficiency = 169
      • Ⅲ. Experimental = 176
      • A. Capillary Conditioning and Modification = 176
      • B. Mobile-Phase Components and Considerations = 176
      • C. Injection = 182
      • D. Detection = 183
      • E. Analytical Figures of Merit = 185
      • Ⅳ. Applications = 186
      • Ⅴ. Conclusion = 187
      • References = 187
      • 7 Isoelectric Focusing in Capillaries / Stellan Hjert$$\acute e$$n
      • Ⅰ. Introduction : A Comparison between Isoelectric Focusing and Other Electrophoresis Methods = 191
      • Ⅱ. Different Ways to Suppress Convection in Carrier-Free Electrophoresis, Including Isoelectric Focusing = 192
      • Ⅲ. The Creation of a pH Gradient from a Mixture of Carrier Ampholytes with Different pI Values = 195
      • Ⅳ. The Principle of Isoelectric Focusing = 195
      • Ⅴ. Terminology = 196
      • Ⅵ. Elimination of Electroendosmosis and Adsorption = 197
      • A. Theoretical Considerations = 197
      • B. Coating Procedure = 199
      • Ⅶ. Determination of the pI of a Protein = 200
      • Ⅷ. Suppression of Precipitation of Proteins = 200
      • Ⅸ. Cathodic and Anodic Drift = 202
      • Ⅹ. Mobilization of the Focused Protein Zones = 203
      • XI. The Practical Performance of a Run = 204
      • XII. Analysis and Comparison of Different Carrier Ampholytes = 207
      • XIII. Apparatus for Focusing in a Chamber of Rectangular Cross-Section, Permitting Scanning for the Focused Proteins at Different Times and at Different Wavelengths = 209
      • XIV. Resolution and Optimal Field Strenght = 210
      • XV. Applications = 210
      • A. Isoelectric Focusing of Carbamylated Carbonic Anhydrase in an Fused-Silica Tubing = 210
      • B. Isoelectric Focusing of Transforrin in a Glass Capillary = 210
      • C. Isoelectric Focusing of a Mixture of Chymotrypsinogen A and Myoglobin in a Rectangular Focusing Chamber = 212
      • D. Zone Electrophoresis in a pH Gradient = 213
      • 8 Capillary Electrophoresis in Entangled Polymer Solutions / Paul D. Grossman
      • Ⅰ. Introduction = 215
      • Ⅱ. Entangled Polymer Solutions = 216
      • A. Overlap Threshold = 216
      • B. Mesh Size = 218
      • C. Experimental Investigation of the Entanglement Threshold and Mesh Size of Hydroxyethyl Cellulose Solutions = 219
      • Ⅲ. Mechanisms of Electrophoretic Migration in a Polymer Network = 222
      • A. The Ogston Model = 223
      • B. Reptation = 224
      • C. Experimental Study of the Migration Mechanism of DNA in Hydroxyethyl Cellulose Solutions = 229
      • Ⅳ. Conclusion = 233
      • References = 233
      • PART Ⅲ APPLICATIONS OF CAPILLARY ELECTROPHORESIS
      • 9 Capillary Electrophoresis Separations of Peptides : Practical Aspects and Applications / Joel C. Colburn
      • Ⅰ. Introduction = 237
      • Ⅱ. Modes of Capillary Electrophoresis Separations = 238
      • A. Charge and Size Effects in Free Solution = 238
      • B. Peptide Separations by Micellar Electrokinetic Capillary Chromatography = 247
      • C. SDS-Polyacrylamide Gel Electrophoresis = 250
      • Ⅲ. Characteristics and Applications = 251
      • A, Resolution and Comparison with HPLC = 251
      • B. Effects on Separations = 253
      • C. Determination of Disulfide Bonds = 254
      • D. Clinical Applications = 255
      • Ⅳ. Protein Digests = 256
      • A. Peptide Mapping = 256
      • B. Screening HPLC Fractions = 262
      • Ⅴ. Wall Interactions = 262
      • Ⅵ. Models of Peptide Mobility = 264
      • Ⅶ. Detection Methods for Capillary Electrophoresis of Peptides = 266
      • A. Direct and Indirect Fluorescence = 266
      • B. Capillary Electrophoresis-Mass Spectrometry = 267
      • C. Stacking = 268
      • D. Other Detection Methods = 269
      • References = 269
      • 10. Protein Analysis by Capillary Electrophoresis / John E, Wiktorowicz ; Joel C. Colburn
      • Ⅰ. Introduction = 273
      • A. Charge, Size, and Shape = 274
      • B. Problems Encountered in CE : Detection, Control of Electroendosmosis, and Wall Interactions = 275
      • Ⅱ. Protein Analysis = 285
      • A. Molecular-Weight Determination = 285
      • B. Isoelectric Focusing = 285
      • C. Purity Determination and Methods Development = 287
      • D. Peptide Mapping = 288
      • E. Native Structural Analysis = 289
      • Ⅲ. Applications = 292
      • A. Human Growth Hormone = 292
      • B. Antibody Complexes = 293
      • C. Erythropoietin = 294
      • D. Membrane Proteins = 296
      • E. Fraction Collection = 296
      • F. Physical Parameters = 297
      • Ⅳ. Future Directions = 297
      • References = 299
      • 11. Separation of Small Molecules by High-Performance Capillary Electrophoresis / Charles W. Demarest ; Elizabeth A. Monnot-Chase ; James Jiu ; Robert Weinberger
      • Ⅰ. Introduction = 301
      • Ⅱ. Capillary Zone Electrophoresis = 307
      • A. Buffers = 309
      • B. Buffer Additives = 311
      • Ⅲ. Electrokinetic Capillary Chromatography = 313
      • A. Micelles = 314
      • B. Surfactants = 315
      • C. Methods Development = 318
      • D. Cyclodextrins = 319
      • Ⅳ. Isotachophoresis = 320
      • Ⅴ. Chemically Modified Capillaries = 312
      • Ⅵ. Method Validation = 326
      • Ⅶ. Applications = 330
      • A. Pharmaceuticals = 330
      • B. Amino Acids = 332
      • C. Clinical Analyses = 332
      • D. Chiral Recognition = 333
      • Ⅷ. Conclusion = 337
      • References = 338
      • APPENDIX : Trobleshooting Guide to Capillary Electrophoresis Operations / Joel C. Colburn ; Paul D. Grossman = 343
      • Index = 347
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼