RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Theoretical study of aluminum-ceramic interfaces.

      한글로보기

      https://www.riss.kr/link?id=T10608475

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      소속기관이 구독 중이 아닌 경우 오후 4시부터 익일 오전 9시까지 원문보기가 가능합니다.

      부가정보

      다국어 초록 (Multilingual Abstract)

      Aluminum is one of the most widely used metals by man. Its low cost, low density, corrosion resistance, high ductility and other properties make it applicable in vehicles, buildings, food containers, and other uses. However, it has poor surface properties and its softness allows it to wear and abrade easily. It adheres to most metals and its low melting point makes it susceptible to friction welding through localized melting. Many Al forming and machining processes such as drilling, rolling, casting, and extrusion require the use of either coatings or lubricants to prevent Al from sticking to the tools. This dissertation examines the adhesion between Al and three materials typically used as coatings or lubricants: graphite, hexagonal boron nitride (h-BN), and cubic boron nitride (c-BN). Atomic scale calculations using the Hohenberg-Kohn-Sham formulism of density functional theory were performed to examine the atomic and electronic structure, and the work of separation between interfaces of Al and each of the three materials listed above. The simulations performed are explained in detail, along with the reasons behind each one.
      Minimal adhesion on the order of 0.11 J/m2 was found for the Al (111)-graphite (0001) interface. Adhesion was slightly higher, 0.14--0.16 J/m2, at the Al (111)-h-BN (0001) interface. This slight increase was due to attraction of B and N atoms in the BN (0001) to Al atoms on the opposing surface. Results for both interfaces suggest that either graphite or h-BN would be useful as lubricants for reducing Al adhesion to other materials. The Al (110)-c-BN (110) had a work of separation of 2.25 J/m2, much higher than the adhesion at the Al-graphite and Al-h-BN interfaces. This high adhesion argues against the use of c-BN as a tool coating for reducing adhesion of Al during aluminum machining.
      To complement these quantum mechanical calculations, a simple thermodynamic study was carried out to determine the reaction enthalpies between specific metal-ceramic interfaces, where the ceramics are those commonly used as coatings in metallurgical applications. From this study, it is proposed that the reaction enthalpy between a metal and a ceramic should be considered as a criterion when determining whether that ceramic should be used in contact with that metal in metallurgical applications such as cutting, drilling or sawing.
      번역하기

      Aluminum is one of the most widely used metals by man. Its low cost, low density, corrosion resistance, high ductility and other properties make it applicable in vehicles, buildings, food containers, and other uses. However, it has poor surface prope...

      Aluminum is one of the most widely used metals by man. Its low cost, low density, corrosion resistance, high ductility and other properties make it applicable in vehicles, buildings, food containers, and other uses. However, it has poor surface properties and its softness allows it to wear and abrade easily. It adheres to most metals and its low melting point makes it susceptible to friction welding through localized melting. Many Al forming and machining processes such as drilling, rolling, casting, and extrusion require the use of either coatings or lubricants to prevent Al from sticking to the tools. This dissertation examines the adhesion between Al and three materials typically used as coatings or lubricants: graphite, hexagonal boron nitride (h-BN), and cubic boron nitride (c-BN). Atomic scale calculations using the Hohenberg-Kohn-Sham formulism of density functional theory were performed to examine the atomic and electronic structure, and the work of separation between interfaces of Al and each of the three materials listed above. The simulations performed are explained in detail, along with the reasons behind each one.
      Minimal adhesion on the order of 0.11 J/m2 was found for the Al (111)-graphite (0001) interface. Adhesion was slightly higher, 0.14--0.16 J/m2, at the Al (111)-h-BN (0001) interface. This slight increase was due to attraction of B and N atoms in the BN (0001) to Al atoms on the opposing surface. Results for both interfaces suggest that either graphite or h-BN would be useful as lubricants for reducing Al adhesion to other materials. The Al (110)-c-BN (110) had a work of separation of 2.25 J/m2, much higher than the adhesion at the Al-graphite and Al-h-BN interfaces. This high adhesion argues against the use of c-BN as a tool coating for reducing adhesion of Al during aluminum machining.
      To complement these quantum mechanical calculations, a simple thermodynamic study was carried out to determine the reaction enthalpies between specific metal-ceramic interfaces, where the ceramics are those commonly used as coatings in metallurgical applications. From this study, it is proposed that the reaction enthalpy between a metal and a ceramic should be considered as a criterion when determining whether that ceramic should be used in contact with that metal in metallurgical applications such as cutting, drilling or sawing.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼