RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      탄소나노튜브와 활성탄에서 산소, 질소 및 아르곤의 흡착평형

      한글로보기

      https://www.riss.kr/link?id=T10293877

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Pressure swing adsorption(PSA) is a well established process for separation or purification of gas mixtures in the chemical industries. Nowdays, the importance of this process increases because it has been widely used as an alternative for cryogenic processes for the on-site generation of nitrogen, oxygen and hydrogen. As further process improvements are made, PSA will more favorably at higher production rates.
      Zeolites, which preferentially adsorb nitrogen, are used for the production of oxygen from air, while for the production of nitrogen, carbon molecular sieves(CMS) are the preferred adsorbents.
      In this work, it was investigated adsorption equilibria of pure oxygen, nitrogen and argon in carbonaceous materials such as an activated carbon(AC), single-walled nanotubes(SWNTs) and multi-walled nanotubes(MWNTs).
      The microporous structure of AC was a slit-shaped pore while SWNTs and MWNTs were cylindrical structure. This different pore structure and pore size distribution may be led to difference in isotherm equilibrium of oxygen, nitrogen and argon. The adsorption capacity of oxygen and nitrogen was in the order AC> SWNTs> MWNTs, while the selectivity was SWNTs> MWNTs> AC.
      번역하기

      Pressure swing adsorption(PSA) is a well established process for separation or purification of gas mixtures in the chemical industries. Nowdays, the importance of this process increases because it has been widely used as an alternative for cryogenic p...

      Pressure swing adsorption(PSA) is a well established process for separation or purification of gas mixtures in the chemical industries. Nowdays, the importance of this process increases because it has been widely used as an alternative for cryogenic processes for the on-site generation of nitrogen, oxygen and hydrogen. As further process improvements are made, PSA will more favorably at higher production rates.
      Zeolites, which preferentially adsorb nitrogen, are used for the production of oxygen from air, while for the production of nitrogen, carbon molecular sieves(CMS) are the preferred adsorbents.
      In this work, it was investigated adsorption equilibria of pure oxygen, nitrogen and argon in carbonaceous materials such as an activated carbon(AC), single-walled nanotubes(SWNTs) and multi-walled nanotubes(MWNTs).
      The microporous structure of AC was a slit-shaped pore while SWNTs and MWNTs were cylindrical structure. This different pore structure and pore size distribution may be led to difference in isotherm equilibrium of oxygen, nitrogen and argon. The adsorption capacity of oxygen and nitrogen was in the order AC> SWNTs> MWNTs, while the selectivity was SWNTs> MWNTs> AC.

      더보기

      목차 (Table of Contents)

      • Contents
      • Abstract = ⅳ
      • Ⅰ. 서론 = 1
      • Ⅱ. 이론 = 3
      • 1. 흡착 = 3
      • Contents
      • Abstract = ⅳ
      • Ⅰ. 서론 = 1
      • Ⅱ. 이론 = 3
      • 1. 흡착 = 3
      • 1) 물리흡착과 화학흡착 = 5
      • 2. 흡착등온식 = 8
      • 1) Langmuir Isotherm = 10
      • 2) Freundlich Isotherm = 12
      • 3) Langmuir-Frendlich Isotherm = 12
      • 4) Toth Isotherm = 13
      • 5) Redlich and Peterson Isotherm = 13
      • 6) Temkin Isotherm = 14
      • 3. 흡착분리공정 = 15
      • 1) 흡착제 재생방법에 따른 분류 = 15
      • 2) 분리기구에 따른 분류 = 16
      • 3) 공급류 조성에 따른 분류 = 17
      • 4. 흡착량의 측정 = 17
      • 5. 흡착현상의 응용 = 18
      • 6. 흡착제 = 18
      • 6.1. 활성탄 = 18
      • (1) 활성탄의 구조 = 19
      • (2) 활성탄의 세공구조 = 19
      • (3) 활성탄의 종류 = 22
      • (4) 활성탄의 이용기술 = 24
      • 6.2. 탄소나노튜브 = 25
      • 1) 탄소나노튜브의 합성 = 26
      • (1) 아크방전법 = 26
      • (2) 레이저 증착법 = 27
      • (3) 화학 기상 증착법 = 27
      • (4) 열 화학 기상 증착법 = 27
      • (5) 기상합성법 = 28
      • 2) 탄소나노튜브의 응용 = 28
      • (1) 수소저장 = 28
      • (2) 초고용량 캐패시터 = 29
      • (3) 트랜지스터 소자응용 = 29
      • Ⅲ. 실험 = 32
      • 1. 실험장치 및 실험방법 = 32
      • 1) 흡착제 = 34
      • 2) 부피측정 = 34
      • 3) 흡착가스 = 34
      • 2. 탄소나노튜브 정제 = 36
      • 3. 흡착제의 재생 = 36
      • 4. 산소, 질소, 아르곤 흡착실험 = 37
      • Ⅳ. 결과 및 고찰 = 38
      • 1. 흡착제에 따른 흡착등온선 = 38
      • 1) 탄소나노튜브와 활성탄 비교 = 38
      • 2) 흡착등온선 비교 = 42
      • 3) Curve fitting = 46
      • 2. 흡착에 영향을 미치는 인자 = 58
      • 1) 촉매금속의 영향 = 58
      • 2) 탄소나노튜브 정제 = 58
      • 3) 온도와 압력에 따른 영향 = 63
      • 4) 기공지름과 기공부피에 따른 영향 = 69
      • Ⅴ. 결론 = 72
      • List of Tabes = 75
      • List of Figure = 76
      • 참고문헌 = 79
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼