RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      A Characterization of the Groups Whose Proper Schur Rings are Commutative = 진 슈어 환이 모두 교환 가능한 군에 관하여

      한글로보기

      https://www.riss.kr/link?id=T15092405

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Let Z[G] be the group ring of a group G over Z. A Schur ring over G is a subring
      of Z[G] which is determined by a certain partition of G. The class of Boolean groups is
      related to the class of symmetric Schur rings in the sense that all the Schur rings over
      a Boolean group are symmetric. The class of abelian groups is related to the class of
      commutative Schur rings in the sense that all the Schur rings over an abelian group are
      commutative. We define a Schur ring A to be Dedekind if the formal sum of every A -
      subgroup is contained in the center of A . Then the class of Dedekind groups is related
      to the class of Dedekind Schur rings in the sense that all the Schur rings over a Dedekind
      group are Dedekind Schur rings. A Schur ring is proper if it is not the group ring. We
      prove in this thesis that all the proper Schur rings over a group G are Dedekind Schur
      rings if and only if G is a Dedekind group or a dihedral group of order 8 or 2 times a
      Fermat prime. As a corollary of this result, we prove that all the proper Schur rings over
      a group G are commutative if and only if G is an abelian group, the quaternion group, or
      a dihedral group of order 8 or 2 times a Fermat prime. Also, we prove that all the proper
      Schur rings over a group G are symmetric if and only if G is a Boolean group or a cyclic
      group of order 4 or a Fermat prime.
      번역하기

      Let Z[G] be the group ring of a group G over Z. A Schur ring over G is a subring of Z[G] which is determined by a certain partition of G. The class of Boolean groups is related to the class of symmetric Schur rings in the sense that all the Schur ring...

      Let Z[G] be the group ring of a group G over Z. A Schur ring over G is a subring
      of Z[G] which is determined by a certain partition of G. The class of Boolean groups is
      related to the class of symmetric Schur rings in the sense that all the Schur rings over
      a Boolean group are symmetric. The class of abelian groups is related to the class of
      commutative Schur rings in the sense that all the Schur rings over an abelian group are
      commutative. We define a Schur ring A to be Dedekind if the formal sum of every A -
      subgroup is contained in the center of A . Then the class of Dedekind groups is related
      to the class of Dedekind Schur rings in the sense that all the Schur rings over a Dedekind
      group are Dedekind Schur rings. A Schur ring is proper if it is not the group ring. We
      prove in this thesis that all the proper Schur rings over a group G are Dedekind Schur
      rings if and only if G is a Dedekind group or a dihedral group of order 8 or 2 times a
      Fermat prime. As a corollary of this result, we prove that all the proper Schur rings over
      a group G are commutative if and only if G is an abelian group, the quaternion group, or
      a dihedral group of order 8 or 2 times a Fermat prime. Also, we prove that all the proper
      Schur rings over a group G are symmetric if and only if G is a Boolean group or a cyclic
      group of order 4 or a Fermat prime.

      더보기

      목차 (Table of Contents)

      • Contents
      • Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
      • 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
      • 2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
      • 2.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
      • Contents
      • Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
      • 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
      • 2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
      • 2.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
      • 2.2 Schur Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
      • 3 Dedekind Schur Rings . . . . . . . . . . . . . . . . . . . . . . . . . . 16
      • 3.1 Definitions and Properties . . . . . . . . . . . . . . . . . . . . . . . 16
      • 3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
      • 4 Non-Dedekind and Non-Dihedral Groups . . . . . . . . . . . . . . 30
      • 5 Commutative Schur Rings and Symmetric Schur Rings . . . . . 39
      • Abstract(Korean) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼