RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      네트웍 앙상블을 위한 관찰 학습 알고리즘 = Observational Learning Algorithm for Network Ensemble

      한글로보기

      https://www.riss.kr/link?id=A82312230

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 논문에서는 사회 학습의 이론의 하나인 관찰 학습 이론에 기반한 네트웍 앙상블을 위한 관찰 학습 알고리즘을 제안한다. 하나의 네트웍이 학습할 때 함께 학습되는 다른 네트웍들을 이용하여 가상 데이터를 생성하여 학습에 이용하므로써 데이터가 부족한 경우 네트웍이 과학습 되는 것을 방지고 각 네트웍의 일반화 성능을 향상시키는 동시에 앙상블의 성능도 향상시킨다. 제안된 방법을 사인 함수의 근사 문제와 중첩된 두 정규 분포의 분류 문제에 적용하고 단일 네트웍, 네트웍 위원회, Bagging 알고리즘과 비교하여 제안된 방법의 일반화 성능의 우수성을 보였다.
      번역하기

      본 논문에서는 사회 학습의 이론의 하나인 관찰 학습 이론에 기반한 네트웍 앙상블을 위한 관찰 학습 알고리즘을 제안한다. 하나의 네트웍이 학습할 때 함께 학습되는 다른 네트웍들을 이용...

      본 논문에서는 사회 학습의 이론의 하나인 관찰 학습 이론에 기반한 네트웍 앙상블을 위한 관찰 학습 알고리즘을 제안한다. 하나의 네트웍이 학습할 때 함께 학습되는 다른 네트웍들을 이용하여 가상 데이터를 생성하여 학습에 이용하므로써 데이터가 부족한 경우 네트웍이 과학습 되는 것을 방지고 각 네트웍의 일반화 성능을 향상시키는 동시에 앙상블의 성능도 향상시킨다. 제안된 방법을 사인 함수의 근사 문제와 중첩된 두 정규 분포의 분류 문제에 적용하고 단일 네트웍, 네트웍 위원회, Bagging 알고리즘과 비교하여 제안된 방법의 일반화 성능의 우수성을 보였다.

      더보기

      목차 (Table of Contents)

      • 요약
      • 1. Introduction
      • 2. 관찰 학습 알고리즘
      • 3. 실험 결과
      • 4. Conclusions
      • 요약
      • 1. Introduction
      • 2. 관찰 학습 알고리즘
      • 3. 실험 결과
      • 4. Conclusions
      • References
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼