RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI우수등재

      Google Street View와 딥러닝을 활용한 서울시 녹지 형평성 분석 : NDVI와 가로이미지 기반 녹지 산출방법과의 비교를 중심으로

      한글로보기

      https://www.riss.kr/link?id=A107838660

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Urban green has various benefits, including promoting physical activity, improving residents’ health, and mitigating urban heat islands. Hence, urban green is considered essential for urban residents, but green inequity issues are being raised. Alth...

      Urban green has various benefits, including promoting physical activity, improving residents’ health, and mitigating urban heat islands. Hence, urban green is considered essential for urban residents, but green inequity issues are being raised. Although several studies have analyzed green equity with the traditional measurement method, the conventional approach is limited in its inability to reflect the actual degree of the green exposure of residents. To fill this gap, this study aims to identify the actual green equity using the Green View Index (GVI), which can represent actual green exposure. This study utilized Google Street View (GSV) and computer vision techniques to measure the GVI. The normalized difference vegetation index (NDVI) and geographic information system (GIS) based green area variables, which are traditional green area variables, were used to compare these distributions with GVI. Furthermore, this study identified the degree of green equity through the relationship between the distribution of green variables and the vulnerable groups. In terms of statistical model, the spatial lag and spatial error models were used to control the spatial autocorrelation. The results of this study are as follows. First, there were significant distributional differences between traditional green variables and GVI. Specifically, traditional green variables were high in the periphery of Seoul. GVI, however, was shown as cold-spots in these areas and highly concentrated in Gangnam, Seocho, and Songpa-gu. Second, the GVI model showed a lack of street greenery where numerous vulnerable people live, unlike traditional green variable models. Specifically, low-income people tend to live in neighborhoods with less street vegetation. Therefore, the government should implement green supply policies for these target neighborhoods. Regarding the methodological perspective, the results indicate that the degree of green inequality may vary depending on the green measurement methods. Moreover, plans for the supply of green should be based on GVI that can represent the actual degree of the exposure of residents.

      더보기

      참고문헌 (Reference)

      1 김미현, "환경형평성을 고려한 서울시 공원입지 분석: ArcGIS의 중첩분석 및 접근성분석기법의 응용" 한국지방행정연구원 29 (29): 77-105, 2015

      2 명수정, "환경정의 측면의 녹지접근성 분석 연구" 한국환경정책·평가연구원 2017

      3 고영주, "서울지역 녹지서비스의 환경형평성 분석- 중구, 성동구, 동대문구를 사례로 -" 한국조경학회 47 (47): 100-116, 2019

      4 조용현, "서울시 환경영향평가에서 가로 녹시율 지표의 적용 실태" 한국환경영향평가학회 19 (19): 205-213, 2010

      5 김용국, "서울시 근린공원 서비스의 질적 평가 및 형평성 분석" 한국도시설계학회 16 (16): 133-149, 2015

      6 신지영, "도시공원 분포의 형평성 분석에 관한 연구 -성남시 사례를 중심으로-" 한국환경복원기술학회 12 (12): 40-49, 2009

      7 Li, X., "Who Lives in Greener Neighborhoods? The Distribution of Street Greenery and Its Association with Residents’ Socioeconomic Conditions in Hartford, Connecticut, USA" 14 (14): 751-759, 2015

      8 Nesbitt, L., "Who Has Access to Urban Vegetation? A Spatial Analysis of Distributional Green Equity in 10 US Cities" 181 : 51-79, 2019

      9 Lu, Y., "Using Google Street View to Investigate the Association between Street Greenery and Physical Activity" 191 : 1-9, 2018

      10 Nguyen, Q. C., "Using Google Street View to Examine Associations between Built Environment Characteristics and U.S. Health Outcomes" 14 : 1-11, 2019

      1 김미현, "환경형평성을 고려한 서울시 공원입지 분석: ArcGIS의 중첩분석 및 접근성분석기법의 응용" 한국지방행정연구원 29 (29): 77-105, 2015

      2 명수정, "환경정의 측면의 녹지접근성 분석 연구" 한국환경정책·평가연구원 2017

      3 고영주, "서울지역 녹지서비스의 환경형평성 분석- 중구, 성동구, 동대문구를 사례로 -" 한국조경학회 47 (47): 100-116, 2019

      4 조용현, "서울시 환경영향평가에서 가로 녹시율 지표의 적용 실태" 한국환경영향평가학회 19 (19): 205-213, 2010

      5 김용국, "서울시 근린공원 서비스의 질적 평가 및 형평성 분석" 한국도시설계학회 16 (16): 133-149, 2015

      6 신지영, "도시공원 분포의 형평성 분석에 관한 연구 -성남시 사례를 중심으로-" 한국환경복원기술학회 12 (12): 40-49, 2009

      7 Li, X., "Who Lives in Greener Neighborhoods? The Distribution of Street Greenery and Its Association with Residents’ Socioeconomic Conditions in Hartford, Connecticut, USA" 14 (14): 751-759, 2015

      8 Nesbitt, L., "Who Has Access to Urban Vegetation? A Spatial Analysis of Distributional Green Equity in 10 US Cities" 181 : 51-79, 2019

      9 Lu, Y., "Using Google Street View to Investigate the Association between Street Greenery and Physical Activity" 191 : 1-9, 2018

      10 Nguyen, Q. C., "Using Google Street View to Examine Associations between Built Environment Characteristics and U.S. Health Outcomes" 14 : 1-11, 2019

      11 Helbich, M., "Using Deep Learning to Examine Street View Green and Blue Spaces and Their Associations with Geriatric Depression in Beijing, China" 126 : 107-117, 2019

      12 Tsai, V.J., "Three-Dimensional Positioning from Google Street View Panoramas" 7 (7): 229-239, 2013

      13 Cordts, M., "The Cityscapes Dataset for Semantic Urban Scene Understanding" 3213-3223, 2016

      14 Rzotkiewicz, A., "Systematic Review of the Use of Google Street View in Health Research: Major Themes, Strengths, Weaknesses and Possibilities for Future Research" 52 : 240-246, 2018

      15 Anselin L., "Spatial Econometrics: Methods and Models" Kluwer Academic Publishers 2006

      16 Zhou, W., "Relationships between Land Cover and the Surface Urban Heat Island:Seasonal Variability and Effects of Spatial and Thematic Resolution of Land Cover Data on Predicting Land Surface Temperatures" 29 (29): 153-167, 2014

      17 Chen, J., "Quantifying the Green View Indicator for Assessing Urban Greening Quality: An Analysis Based on Internet-Crawling Street View Data" 113 : 106192-, 2020

      18 Rigolon, A., "Parks and Young People: An Environmental Justice Study of Park Proximity, Acreage, and Quality in Denver, Colorado" 165 : 73-83, 2017

      19 Park, J. H., "Park Accessibility Impacts Housing Prices in Seoul" 9 (9): 1-14, 2017

      20 Thompson, C. W., "More Green Space Is Linked to Less Stress in Deprived Communities: Evidence from Salivary Cortisol Patterns" 105 (105): 221-229, 2012

      21 Oh, J., "Minority Neighbourhoods and Availability of Green Amenities: Empirical Findings from Seoul, South Korea" 25 (25): 69-82, 2020

      22 Yin, L., "Measuring Visual Enclosure for Street Walkability: Using Machine Learning Algorithms and Google Street View Imagery" 76 : 147-153, 2016

      23 Ye, Y., "Measuring Daily Accessed Street Greenery:A Human-Scale Approach for Informing Better Urban Planning Practices" 191 : 1-13, 2018

      24 Li, X., "Mapping the Spatial Distribution of Shade Provision of Street Trees in Boston Using Google Street View Panoramas" 31 : 109-119, 2018

      25 Gong, F. Y., "Mapping Sky, Tree, and Building View Factors of Street Canyons in a High-Density Urban Environment" 134 (134): 155-167, 2018

      26 정명희, "MODIS NDVI 시계열 패턴 변화를 이용한 산림식생변화 모니터링 방법론" 대한공간정보학회 20 (20): 47-55, 2012

      27 Mingshu Wang, "Life between buildings from a street view image: What do big data analytics reveal about neighbourhood organisational vitality?" SAGE Publications 58 (58): 3118-3139, 2021

      28 Gordon-Larsen, P., "Inequality in the Built Environment Underlies Key Health Disparities in Physical Activity and Obesity" 117 (117): 417-424, 2006

      29 Zhang, Y., "Impacts of Street-Visible Greenery on Housing Prices: Evidence from a Hedonic Price Model and a Massive Street View Image Dataset in Beijing" 7 (7): 1-19, 2018

      30 Schwarz, K., "Green, but Not Just? Rethinking Environmental Justice Indicators in Shrinking Cities" 41 : 816-821, 2018

      31 Markevych, I., "Exploring Pathways Linking Greenspace to Health: Theoretical and Methodological Guidance" 158 : 301-317, 2017

      32 Chen, L. C., "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation" 801-818, 2018

      33 Fu, X., "Do Street-Level Scene Perceptions Affect Housing Prices in Chinese Megacities? An Analysis Using Open Access Datasets and Deep Learning" 14 (14): 1-18, 2019

      34 Xia, Y., "Development of a System for Assessing the Quality of Urban Street-Level Greenery Using Street View Images and Deep Learning" 59 : 1-12, 2021

      35 Yang, J., "Can you see green? Assessing the visibility of urban forests in cities" 91 (91): 97-104, 2009

      36 Lu, Y., "Associations between Overhead-View and Eye-Level Urban Greenness and Cycling Behaviors" 88 : 10-18, 2019

      37 Ki, D., "Analyzing the Effects of Green View Index of Neighborhood Streets on Walking Time Using Google Street View and Deep Learning" 205 : 1-11, 2021

      38 서울시, "2030 서울시 공원녹지 기본계획" 2015

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2020 평가예정 계속평가 신청대상 (등재유지)
      2015-06-09 학술지명변경 외국어명 : korea Planners Association -> Journal of Korea Planning Association
      2015-01-01 평가 우수등재학술지 선정 (계속평가)
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 대한국토ㆍ도시계획학회 -> 대한국토·도시계획학회 KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.86 0.86 0.96
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.94 0.94 1.343 0.17
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼