RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      A particle trapping chip using the wide and uniform slit formed by a deformable membrane with air bubble plugs

      한글로보기

      https://www.riss.kr/link?id=A104338421

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      We present a high-efficient particle trapping chip, where a wide and uniform slit is formed by a deformable membrane barrier with air bubble plugs. The previous particle trapping methods based on membrane barriers resulted in low trapping efficiency d...

      We present a high-efficient particle trapping chip, where a wide and uniform slit is formed by a deformable membrane barrier with air bubble plugs. The previous particle trapping methods based on membrane barriers resulted in low trapping efficiency due to the non-uniform slit gap between the membrane and the substrate, especially at the side walls of rectangular channel. In the present method,the air bubble plugs remained in the extended microchannel during sample filling process, block the particle passage at the both side ends of the membrane, thus all particles flow through the uniform slit gap. Therefore, high-efficient particle trapping without particle loss can be achieved. The present particle trapping chip was composed of three layers: pneumatic (top), membrane and channel (bottom) layers.
      The membrane was deformed by the pneumatic pressure applied from the top layer. In the experimental study using 10.3 mm-diameter polystyrene beads, the membrane barrier with the air bubble plugs successfully trapped the injected beads with the trapping efficiency of 100% at the flow rate of 10 ml/min,while the barrier without the air bubble plugs showed low efficiency of 20%. At the increased flow rate of 20 ml/min, beads were still trapped with trapping efficiency over 98% in the present device. By using a mixture of 5.7 and 10.3 mm-diameter beads, we also verified the present method was capable to trap and release the beads selectively according to their size with the release efficiency of 95.1%. The present simple and effective particle trapping device is applicable for the high-efficient bioparticle isolation and recovery in the micro total analysis system.

      더보기

      참고문헌 (Reference)

      1 R.L. Taylor, "Solution of clamped rectangular plate problems" 20 (20): 757-765, 2004

      2 R. Guldiken, "Sheathless size-based acoustic particle separation" 12 (12): 905-922, 2012

      3 M. Kersaudy-Kerhoas, "Recent advances in microparticle continuous separation" 2 (2): 1-13, 2008

      4 A. Soleymani, "Pressure drop in micro T-mixers" 20 (20): 015029-, 2010

      5 P.R.C. Gascoyne, "Particle separation by dielectrophoresis" 23 (23): 1973-1983, 2009

      6 Y. Yoon, "Multidirectional UV lithography for complex 3-D MEMS structures" 15 (15): 1121-1130, 2006

      7 X. Yang, "Micromachined membrane particle filters" 73 (73): 184-191, 1999

      8 O.N. Katasonova, "Methods for continuous flow fractionation of microparticles: outlooks and fields of application" 64 (64): 212-225, 2009

      9 S. Zheng, "Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells" 1162 (1162): 154-161, 2007

      10 K. McCloskey, "Magnetic cell separation: characterization of magnetophoretic mobility" 75 (75): 6868-6874, 2003

      1 R.L. Taylor, "Solution of clamped rectangular plate problems" 20 (20): 757-765, 2004

      2 R. Guldiken, "Sheathless size-based acoustic particle separation" 12 (12): 905-922, 2012

      3 M. Kersaudy-Kerhoas, "Recent advances in microparticle continuous separation" 2 (2): 1-13, 2008

      4 A. Soleymani, "Pressure drop in micro T-mixers" 20 (20): 015029-, 2010

      5 P.R.C. Gascoyne, "Particle separation by dielectrophoresis" 23 (23): 1973-1983, 2009

      6 Y. Yoon, "Multidirectional UV lithography for complex 3-D MEMS structures" 15 (15): 1121-1130, 2006

      7 X. Yang, "Micromachined membrane particle filters" 73 (73): 184-191, 1999

      8 O.N. Katasonova, "Methods for continuous flow fractionation of microparticles: outlooks and fields of application" 64 (64): 212-225, 2009

      9 S. Zheng, "Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells" 1162 (1162): 154-161, 2007

      10 K. McCloskey, "Magnetic cell separation: characterization of magnetophoretic mobility" 75 (75): 6868-6874, 2003

      11 Y. Huang, "MEMS-based sample preparation for molecular diagnostics" 372 (372): 49-65, 2002

      12 L. Paterson, "Lightinduced cell separation in a tailored optical landscape" 87 (87): 123901-, 2005

      13 K.-H. Han, "Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium" 8 (8): 1079-1086, 2008

      14 S.S. Kuntaegowdanahalli, "Inertial microfluidics for continuous particle separation in spiral microchannels" 9 (9): 2973-2980, 2009

      15 D. Di Carlo, "Inertial microfluidics" 9 (9): 3038-3046, 2009

      16 M.G. Lee, "Inertial blood plasma separation in a contractioneexpansion array microchannel" 98 (98): 253702-, 2011

      17 H. Sato, "In-channel 3-D micromesh structures using maskless multi-angle exposures and their microfilter application" 111 (111): 87-92, 2004

      18 D.W. Lee, "High-radix microfluidic multiplexer with pressure valves of different thresholds" 9 (9): 1681-1686, 2009

      19 C.-T. Seo, "Fabrication of circular-type microchannel using photoresist reflow and isotropic etching for microfluidic devices" 43 (43): 7773-7776, 2004

      20 D. Choudhury, "Exploitation of physical and chemical constraints for three-dimensional microtissue construction in microfluidics" 5 (5): 22203-, 2011

      21 D.W. Inglis, "Efficient microfluidic particle separation arrays" 94 (94): 013510-, 2009

      22 L.R.Huang, "Continuousparticle separationthrough deterministic lateral displacement" 304 (304): 987-990, 2004

      23 J. Shi, "Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW)" 9 (9): 3354-3359, 2009

      24 J. Takagi, "Continuous particle separation in a microchannel having asymmetrically arranged multiple branches" 5 (5): 778-784, 2005

      25 T. Laurell, "Chip integrated strategies for acoustic separation and manipulation of cells and particles" 36 (36): 492-506, 2007

      26 S.C. Grover, "Automated single-cell sorting system based on optical trapping" 6 (6): 14-22, 2001

      27 C.E. Imrak, "An exact solution for the deflection of a clamped rectangular plate under uniform load" 1 (1): 2129-2137, 2007

      28 S. Miltenyi, "A. Radbruch, High gradient magnetic cell separation with MACS" 11 (11): 231-238, 1990

      29 S.-B. Huang, "A tunable micro filter modulated by pneumatic pressure for cell separation" 142 (142): 389-399, 2009

      30 A.A.S. Bhagat, "A passive planar micromixer with obstructions for mixing at low Reynolds numbers" 17 (17): 1017-1024, 2007

      31 S. Chang, "A continuous size-dependent particle separator using a negative dielectrophoretic virtual pillar array" 8 (8): 1930-1936, 2008

      32 I. Doh, "A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process" 121 (121): 59-65, 2005

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2008-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2007-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.8 0.18 1.17
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.92 0.77 0.297 0.1
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼