RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Recent advances in electrode development for biomedical applications

      한글로보기

      https://www.riss.kr/link?id=A107771988

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Elaborate electrodes that enable adhesion to the skin surface and eff ectively collect vital signs are necessitated. In recentyears, various electrode materials and novel structures have been developed, and they have garnered scientifi c attention due...

      Elaborate electrodes that enable adhesion to the skin surface and eff ectively collect vital signs are necessitated. In recentyears, various electrode materials and novel structures have been developed, and they have garnered scientifi c attention dueto their higher sensing performances compared with those of conventional electrode-based sensors. This paper provides anoverview of recent advances in biomedical sensors, focusing on the development of novel electrodes. We comprehensivelyreview the diff erent types of electrode materials in the context of effi cient biosignal detection, with respect to material compositionfor fl exible and wearable electrodes and novel electrode structures. Finally, we discuss recent packaging technologiesin biomedical applications using fl exible and wearable electrodes.

      더보기

      참고문헌 (Reference)

      1 Gutruf P, "Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models" 10 (10): 5742-, 2019

      2 Jeong JW, "Wireless Optofl uidic Systems for Programmable In Vivo Pharmacology and Optogenetics" 162 (162): 662-674, 2015

      3 Gomez R, "User Experience Design Practice" 261-272, 2014

      4 Webb RC, "Ultrathin conformal devices for precise and continuous thermal characterization of human skin" 12 (12): 938-944, 2013

      5 Morikawa Y, "Ultrastretchable Kirigami Bioprobes" 7 (7): 1701100-, 2018

      6 Yokota T, "Ultraflexible organic photonic skin" 2 (2): e1501856-, 2016

      7 Yang Y, "Ultrafine Graphene Nanomesh with Large On/Off Ratio for High-Performance Flexible Biosensors" 27 (27): 1604096-, 2017

      8 Trautmann A, "Towards a versatile point-of-care system combining femtosecond laser generated microfl uidic channels and direct laser written microneedle arrays" 5 (5): 6-, 2019

      9 Sackmann EK, "The present and future role of microfluidics in biomedical research" 507 (507): 181-189, 2014

      10 Steinhubl SR, "The emerging field of mobile health" 7 (7): 283rv3-rv3-, 2015

      1 Gutruf P, "Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models" 10 (10): 5742-, 2019

      2 Jeong JW, "Wireless Optofl uidic Systems for Programmable In Vivo Pharmacology and Optogenetics" 162 (162): 662-674, 2015

      3 Gomez R, "User Experience Design Practice" 261-272, 2014

      4 Webb RC, "Ultrathin conformal devices for precise and continuous thermal characterization of human skin" 12 (12): 938-944, 2013

      5 Morikawa Y, "Ultrastretchable Kirigami Bioprobes" 7 (7): 1701100-, 2018

      6 Yokota T, "Ultraflexible organic photonic skin" 2 (2): e1501856-, 2016

      7 Yang Y, "Ultrafine Graphene Nanomesh with Large On/Off Ratio for High-Performance Flexible Biosensors" 27 (27): 1604096-, 2017

      8 Trautmann A, "Towards a versatile point-of-care system combining femtosecond laser generated microfl uidic channels and direct laser written microneedle arrays" 5 (5): 6-, 2019

      9 Sackmann EK, "The present and future role of microfluidics in biomedical research" 507 (507): 181-189, 2014

      10 Steinhubl SR, "The emerging field of mobile health" 7 (7): 283rv3-rv3-, 2015

      11 Bronzino JD, "The Biomedical Engineering Handbook Third Edition Medical Devices and Systems" CRC Taylor & Francis 2006

      12 Junyong L, "Study of piezoresistance eff ect of carbon nanotube-PDMS composite materials for nanosensors" 1240-1243, 2007

      13 Zhu C, "Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors" 1 (1): 183-190, 2018

      14 Xu S, "Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems" 4 (4): 1543-, 2013

      15 Kayser LV, "Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT : PSS" 31 (31): 1806133-, 2019

      16 Norton JJS, "Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface" 112 (112): 3920-3925, 2015

      17 Kim SB, "Soft, Skin-Interfaced Microfluidic Systems with Wireless, Battery-Free Electronics for Digital, Real-Time Tracking of Sweat Loss and Electrolyte Composition" 14 (14): 1802876-, 2018

      18 Xu S, "Soft microfluidic assemblies of sensors, circuits, and radios for the skin" 344 (344): 70-74, 2014

      19 Krieger KJ, "Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing" 5 (5): 42-, 2019

      20 Zhang E, "Porous Co3O4 hollow nanododecahedra for nonenzymatic glucose biosensor and biofuel cell" 81 : 46-53, 2016

      21 Caliò A, "Polymeric microneedles based enzymatic electrodes for electrochemical biosensing of glucose and lactic acid" 236 : 343-349, 2016

      22 Ludwig KA, "Poly(3, 4-ethylenedioxythiophene)(PEDOT)polymer coatings facilitate smaller neural recording electrodes" 8 (8): 014001-, 2011

      23 Liu C-X, "Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing" 19 (19): 085019-, 2009

      24 Bokobza L, "Multiwall carbon nanotube elastomeric composites : A review" 48 (48): 4907-4920, 2007

      25 Lee K, "Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch" 4 (4): 148-158, 2020

      26 Nejad HR, "Low-cost and cleanroom-free fabrication of microneedles" 4 (4): 17073-, 2018

      27 Srivastava AK, "Long term biopotential recording by body conformable photolithography fabricated low cost polymeric microneedle arrays" 236 : 164-172, 2015

      28 "Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018" International Agency for Research on Cancer

      29 Aoyagi S, "Laser fabrication of high aspect ratio thin holes on biodegradable polymer and its application to a microneedle" 139 (139): 293-302, 2007

      30 Zribi B, "Large area graphene nanomesh : an artificial platform for edgeelectrochemical biosensing at the sub-attomolar level" 8 (8): 15479-15485, 2016

      31 Lim SH, "High resolution photopolymer for 3D printing of personalised microneedle for transdermal delivery of anti-wrinkle small peptide" 2020

      32 Bai J, "Graphene nanomesh" 5 (5): 190-194, 2010

      33 Liu J, "Functionalization of Monolithic and Porous Three-Dimensional Graphene by One-Step Chitosan Electrodeposition for Enzymatic Biosensor" 6 (6): 19997-20002, 2014

      34 Gao W, "Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis" 529 (529): 509-514, 2016

      35 Baek J-Y, "Flexible polymeric dry electrodes for the long-term monitoring of ECG" 143 (143): 423-429, 2008

      36 Ren L, "Flexible microneedle array electrode using magnetorheological drawing lithography for bio-signal monitoring" 268 : 38-45, 2017

      37 Trung TQ, "Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoring and Personal Healthcare" 28 (28): 4338-4372, 2016

      38 Cui C, "Flexible Single-Electrode Triboelectric Nanogenerator and Body Moving Sensor Based on Porous Na 2 CO 3 /Polydimethylsiloxane Film" 10 (10): 3652-3659, 2018

      39 Kim H-U, "Flexible MoS 2 –Polyimide Electrode for Electrochemical Biosensors and Their Applications for the Highly Sensitive Quantifi cation of Endocrine Hormones : PTH, T3, and T4" 92 (92): 6327-6333, 2020

      40 Baghayeri M, "Fabrication of a facile electrochemical biosensor for hydrogen peroxide using effi cient catalysis of hemoglobin on the porous Pd@Fe3O4-MWCNT nanocomposite" 74 : 190-198, 2015

      41 Ren L, "Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring" 16 (16): 908-, 2016

      42 Sun Y, "Fabrication of Composite Microneedle Array Electrode for Temperature and Bio-Signal Monitoring" 18 (18): 1193-, 2018

      43 Zhou W, "Fabrication and impedance measurement of novel metal dry bioelectrode" 201 : 127-133, 2013

      44 Kim DH, "Epidermal electronics" 333 (333): 838-843, 2011

      45 Huang X, "Epidermal differential impedance sensor for conformal skin hydration monitoring" 7 (7): 52-, 2012

      46 Lee J-B, "Electrical and mechanical characterization of stretchable multi-walled carbon nanotubes/polydimethylsiloxane elastomeric composite conductors" 72 (72): 1257-1263, 2012

      47 Fu Y, "Dry Electrodes for Human Bioelectrical Signal Monitoring" 20 (20): 3651-, 2020

      48 Lee K, "Drawing Lithography : Three-Dimensional Fabrication of an Ultrahigh-Aspect-Ratio Microneedle" 22 (22): 483-486, 2010

      49 Composites Part AA, "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites : A review" 41 (41): 1345-1367, 2010

      50 Chlaihawi AA, "Development of printed and fl exible dry ECG electrodes" 20 : 9-15, 2018

      51 Chlaihawi AA, "Development of fl exible dry ECG electrodes based on MWCNT/PDMS composite" 1-4, 2015

      52 Gowers SAN, "Development of a Minimally Invasive Microneedle-Based Sensor for Continuous Monitoring of β-Lactam Antibiotic Concentrations in Vivo" 4 (4): 1072-1080, 2019

      53 Barrau S, "DC and AC Conductivity of Carbon Nanotubes – Polyepoxy Composites" 36 (36): 5187-5194, 2003

      54 Sánchez S, "Carbon nanotube /polysulfone composite screen-printed electrochemical enzyme biosensors" 132 (132): 142-147, 2006

      55 Jung H-C, "CNT/PDMS Composite Flexible Dry Electrodesfor Long-Term ECG Monitoring" 59 (59): 1472-1479, 2012

      56 Khan S, "Bendable piezoresistive sensors by screen printing MWCNT/PDMS composites on fl exible substrates" 1-4, 2014

      57 Wu M, "Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes" 117 : 111299-, 2020

      58 Zhang Y, "A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes" 112 (112): 11757-11764, 2015

      59 Meng Y, "A flexible dry microdome electrode for ECG monitoring" 21 (21): 1241-1248, 2014

      60 Han D, "4D Printing of a Bioinspired Microneedle Array with Backward-Facing Barbs for Enhanced Tissue Adhesion" 30 (30): 1909197-, 2020

      61 Yun T, "2D Metal Chalcogenide Nanopatterns by Block Copolymer Lithography" 28 (28): 1804508-, 2018

      62 Toh RJ, "1T-Phase WS2 Protein-Based Biosensor" 27 (27): 1604923-, 2017

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-10-01 평가 등재학술지 선정 (기타) KCI등재
      2010-01-01 평가 SCOPUS 등재 (기타) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.19 0.19 0.16
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.14 0.16 0.379 0.21
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼