RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      ON CANTOR SETS AND PACKING MEASURES

      한글로보기

      https://www.riss.kr/link?id=A103360376

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      For every doubling gauge g, we prove that there is a Cantor set of positive finite Hg-measure, Pg-measure, and Pg 0 -premeasure. Also, we show that every compact metric space of infinite Pg 0 -premeasure has a compact countable subset of infinite Pg 0 -premeasure. In addition, we obtain a class of uniform Cantor sets and prove that, for every set E in this class, there exists a countable set F, with F = E∪F, and a doubling gauge g such that E ∪ F has different positive finite Pg-measure and Pg 0 -premeasure.
      번역하기

      For every doubling gauge g, we prove that there is a Cantor set of positive finite Hg-measure, Pg-measure, and Pg 0 -premeasure. Also, we show that every compact metric space of infinite Pg 0 -premeasure has a compact countable subset of infinite Pg 0...

      For every doubling gauge g, we prove that there is a Cantor set of positive finite Hg-measure, Pg-measure, and Pg 0 -premeasure. Also, we show that every compact metric space of infinite Pg 0 -premeasure has a compact countable subset of infinite Pg 0 -premeasure. In addition, we obtain a class of uniform Cantor sets and prove that, for every set E in this class, there exists a countable set F, with F = E∪F, and a doubling gauge g such that E ∪ F has different positive finite Pg-measure and Pg 0 -premeasure.

      더보기

      참고문헌 (Reference)

      1 C. Tricot, "Two definitions of fractional dimension" 91 (91): 57-74, 1982

      2 Y. Peres, "The self-affine carpets of McMullen and Bedford have infinite Hausdorff mea-sure" 116 (116): 513-526, 1994

      3 Y. Peres, "The packing measure of self-affine carpets" 115 (115): 437-450, 1994

      4 D. J. Feng, "Some relations between packing pre-measure and packing measure" 31 (31): 665-670, 1999

      5 S. Y. Wen, "Some properties of packing measure with doubling gauge" 165 (165): 125-134, 2004

      6 D. J. Feng, "Some dimensional results for homogeneous Moran sets" 40 (40): 475-482, 1997

      7 S. J. Taylor, "Packing measure and its evaluation for a Brownian path" 288 (288): 679-699, 1985

      8 H. Joyce, "On the existence of subsets of finite positive packing measure" 42 (42): 15-24, 1995

      9 C. Rogers, "Hausdorff Measures" Cambridge University Press 1998

      10 P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces" Cambridge University Press 1995

      1 C. Tricot, "Two definitions of fractional dimension" 91 (91): 57-74, 1982

      2 Y. Peres, "The self-affine carpets of McMullen and Bedford have infinite Hausdorff mea-sure" 116 (116): 513-526, 1994

      3 Y. Peres, "The packing measure of self-affine carpets" 115 (115): 437-450, 1994

      4 D. J. Feng, "Some relations between packing pre-measure and packing measure" 31 (31): 665-670, 1999

      5 S. Y. Wen, "Some properties of packing measure with doubling gauge" 165 (165): 125-134, 2004

      6 D. J. Feng, "Some dimensional results for homogeneous Moran sets" 40 (40): 475-482, 1997

      7 S. J. Taylor, "Packing measure and its evaluation for a Brownian path" 288 (288): 679-699, 1985

      8 H. Joyce, "On the existence of subsets of finite positive packing measure" 42 (42): 15-24, 1995

      9 C. Rogers, "Hausdorff Measures" Cambridge University Press 1998

      10 P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces" Cambridge University Press 1995

      11 S. Y. Wen, "Gauges for the self-similar sets" 281 (281): 1205-1214, 2008

      12 K. J. Falconer, "Fractal Geometry: Mathematical Foundations and Applications" John Wily & Sons 1990

      13 D. J. Feng, "Dimensions and gauges for symmetric cantor sets" 11 (11): 108-110, 1995

      14 T. Rajala, "Comparing the Hausdorff and packing measures of sets of small dimension in metric spaces" 164 (164): 313-323, 2011

      15 D. J. Feng, "Comparing packing measures to Hausdorff measures on the line" 241 : 65-72, 2002

      16 M. Cs¨ornyei, "An example illustrating Pg(K) ≠ Pg0(K) for sets of finite pre-measure" 27 (27): 65-70, 2001

      17 A. Dvoretzky, "A note on Hausdorff dimension functions" 44 : 13-16, 1948

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.35 0.1 0.27
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.23 0.2 0.339 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼