RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Challenges in Wide Implementation of Genome Editing for Crop Improvement

      한글로보기

      https://www.riss.kr/link?id=A104981980

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Genome editing technologies using customizable sequence specific nucleases (SSNs) enables precise genome modification in plants, which has revolutionized functional genomics research as well as crop improvement. Applicability of SSN-mediated genome ed...

      Genome editing technologies using customizable sequence specific nucleases (SSNs) enables precise genome modification in plants, which has revolutionized functional genomics research as well as crop improvement. Applicability of SSN-mediated genome editing ranges from targeted gene knockout and single base modification to multiple gene stacking into desired genomic sites. However, there are still considerable challenges in implementing genome editing technologies for practical crop improvement. Here, we briefly discuss the technological challenges, especially those associated with the delivery of SSNs and with homologous recombination-mediated genome editing, and address some promising solutions to overcome the issues.

      더보기

      참고문헌 (Reference)

      1 Curtis IS, "Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method – plant development and surfactant are important in optimizing transformation efficiency" 10 (10): 363-371, 2001

      2 Trieu AT, "Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium" 22 (22): 531-541, 2000

      3 Malyska A, "The role of public opinion in shaping trajectories of agricultural biotechnology" 34 (34): 530-534, 2016

      4 Puchta H, "The repair of double-strand breaks in plants:Mechanisms and consequences for genome evolution" 56 (56): 1-14, 2005

      5 Rod-in W, "The floral-dip method for rice (Oryza sativa) transformation" 10 (10): 467-474, 2014

      6 Bortesi L, "The CRISPR/Cas9 system for plant genome editing and beyond" 33 (33): 41-52, 2015

      7 Christian M, "Targeting DNA double-strand breaks with TAL effector nucleases" 186 (186): 757-761, 2010

      8 Svitashev S, "Targeted mutagenesis, precise gene editing, and site-specific gene insertion in Maize using Cas9 and guide RNA" 169 (169): 931-945, 2015

      9 Stoddard TJ, "Targeted mutagenesis in plant cells through transformation of sequence-specific nuclease mRNA" 5 : e0154634-, 2016

      10 Hilscher J, "Targeted modification of plant genomes for precision crop breeding" 12 : 1600173-, 2016

      1 Curtis IS, "Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method – plant development and surfactant are important in optimizing transformation efficiency" 10 (10): 363-371, 2001

      2 Trieu AT, "Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium" 22 (22): 531-541, 2000

      3 Malyska A, "The role of public opinion in shaping trajectories of agricultural biotechnology" 34 (34): 530-534, 2016

      4 Puchta H, "The repair of double-strand breaks in plants:Mechanisms and consequences for genome evolution" 56 (56): 1-14, 2005

      5 Rod-in W, "The floral-dip method for rice (Oryza sativa) transformation" 10 (10): 467-474, 2014

      6 Bortesi L, "The CRISPR/Cas9 system for plant genome editing and beyond" 33 (33): 41-52, 2015

      7 Christian M, "Targeting DNA double-strand breaks with TAL effector nucleases" 186 (186): 757-761, 2010

      8 Svitashev S, "Targeted mutagenesis, precise gene editing, and site-specific gene insertion in Maize using Cas9 and guide RNA" 169 (169): 931-945, 2015

      9 Stoddard TJ, "Targeted mutagenesis in plant cells through transformation of sequence-specific nuclease mRNA" 5 : e0154634-, 2016

      10 Hilscher J, "Targeted modification of plant genomes for precision crop breeding" 12 : 1600173-, 2016

      11 Saminathan Subburaj, "Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins" Springer Nature 35 (35): 1535-1544, 2016

      12 Martins PK, "Setaria viridis floral-dip: A simple and rapid Agrobacterium-mediated transformation method" 6 : 61-63, 2015

      13 Waterworth WM, "Repairing breaks in the plant genome: the importance of keeping it together" 192 (192): 805-822, 2011

      14 Morbitzer R, "Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors" 107 (107): 21617-21622, 2010

      15 Ding Y, "Recent advances in genome editing using CRISPR/Cas9" 7 : 703-, 2016

      16 Reiss B, "RecA stimulates sister chromatid exchange and the fidelity of double-strand break repair, but not gene targeting, in plants transformed by Agrobacterium" 97 (97): 3358-3363, 2000

      17 Martin-Ortigosa S, "Proteolistics: a biolistic method for intracellular delivery of proteins" 23 (23): 743-756, 2014

      18 Sun Y, "Precise genome modification via sequence-specific nucleases-mediated gene targeting for crop improvement" 7 : 1928-, 2016

      19 Shimatani Z, "Positive–negative-selection-mediated gene targeting in rice" 5 : 748-, 2015

      20 Matzke AJM, "Position effects and epigenetic silencing of plant transgenes" 1 (1): 142-148, 1998

      21 Voytas DF, "Plant genome engineering with sequence-specific nucleases" 64 (64): 327-350, 2013

      22 Kwon Y-I, "Overexpression of OsRecQl4 and/or OsExo1 enhances DSB-induced homologous recombination in rice" 53 (53): 2142-2152, 2012

      23 Sauer NJ, "Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants" 170 (170): 1917-1928, 2016

      24 Luo S, "Non-transgenic plant genome editing using purified sequence-specific nucleases" 8 (8): 1425-1427, 2015

      25 Pitzschke A, "New insights into an old story:Agrobacterium‐induced tumour formation in plants by plant transformation" 29 (29): 1021-1032, 2010

      26 Popat A, "Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers" 3 (3): 2801-2818, 2011

      27 Martin-Ortigosa S, "Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via loxP Site excision" 164 (164): 537-547, 2014

      28 Even-Faitelson L, "Localized egg-cell expression of effector proteins for targeted modification of the Arabidopsis genome" 68 (68): 929-937, 2011

      29 Pellegrineschi A, "Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants" 45 : 421-430, 2002

      30 Kim YG, "Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain" 93 (93): 1156-1160, 1996

      31 Steinert J, "Homology-based doublestrand break-induced genome engineering in plants" 35 (35): 1429-1438, 2016

      32 Wright DA, "Highfrequency homologous recombination in plants mediated by zinc-finger nucleases" 44 : 693-705, 2005

      33 Bartlett JG, "High-throughput Agrobacterium-mediated barley transformation" 4 (4): 22-, 2008

      34 Čermák T, "High-frequency, precise modification of the tomato genome" 16 (16): 232-, 2015

      35 Townsend JA, "High-frequency modification of plant genes using engineered zinc-finger nucleases" 459 (459): 442-445, 2009

      36 Mu G, "Genetic transformation of maize female inflorescence following floral dip method mediated by Agrobacterium" 11 (11): 178-183, 2012

      37 Mostafa K. Sarmast, "Genetic transformation and somaclonal variation in conifers" 한국식물생명공학회 10 (10): 309-325, 2016

      38 Lu C, "Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation" 27 (27): 273-278, 2008

      39 Bastaki NK, "Floral-Dip Transformation of flax (Linum usitatissimum) to generate transgenic progenies with a high transformation rate" 94 : 52189-, 2014

      40 Clough SJ, "Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana" 16 : 735-743, 1998

      41 Elmayan T, "Expression of single copies of a strongly expressed 35S transgene can be silenced post-transcriptionally" 9 (9): 787-797, 1996

      42 Zale JM, "Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens" 28 (28): 903-913, 2009

      43 Kaeppler SM, "Epigenetic aspects of somaclonal variation in plants" 43 (43): 179-188, 2000

      44 Sun Y, "Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase" 9 (9): 628-631, 2016

      45 Terada R, "Efficient gene targeting by homologous recombination in rice" 20 (20): 1030-1034, 2002

      46 Liang Z, "Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes" 8 : 14261-, 2017

      47 Woo JW, "DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins" 33 (33): 1162-1164, 2015

      48 Baltes NJ, "DNA replicons for plant genome engineering" 26 (26): 151-163, 2014

      49 Endo M, "Biallelic gene targeting in rice" 170 (170): 667-677, 2016

      50 Puchta H, "Applying CRISPR/Cas for genome engineering in plants: the best is yet to come" 36 : 1-8, 2017

      51 Altpeter F, "Advancing crop transformation in the era of genome editing" 28 (28): 1510-1520, 2016

      52 Nishizawa-Yokoi A, "A universal positive-negative selection system for gene targeting in plants combining an antibiotic resistance gene and its antisense RNA" 169 (169): 362-370, 2015

      53 Li J, "A rapid and simple method for Brassica napus floral-dip transformation and selection of transgenic plantlets" 2 (2): 127-131, 2010

      54 Jinek M, "A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity" 337 (337): 816-821, 2012

      55 Smith J, "A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences" 34 (34): e149-, 2006

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2016-04-01 평가 SCOPUS 등재 (기타) KCI등재
      2015-12-01 평가 등재후보로 하락 (기타) KCI등재후보
      2011-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2010-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2008-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.09 0.09 0.11
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.12 0.11 0.226 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼