RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Fe-Cr-Ni 오스테나이트계 스테인리스강의 미소편석과 잔류 δ-페라이트 양에 대한 계산 = Calculation of Microsegregation and Amount of Retained δ-ferrite in Fe-Cr-Ni Austenitic Stainless Steel

      한글로보기

      https://www.riss.kr/link?id=A3234297

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In equilibrium, 304 stainless steel has only γ-austenite phase below about 1170℃ and solutes are uniformly distributed in γ-austenite. Due to incomplete solid-state diffusion, it has retained δ-ferrite as well as γ-austenite and the solute distribution becomes inhomogeneous in each phase. To further understand the solidification behavior of 304 stainless steel, the variation of δ-ferrite amount with temperature and the solute concentration in each phase across the phase boundary are calculated in this study. The calculated solute contents at the interface are in good agreement with experimental data available. It is shown that the equilibrium calculation using 304 steel composition itself produces better results than using equivalent composition. The calculated amounts of retained δ-ferrite using 304 equivalent composition are somewhat higher than experimentally observed values. Much better agreement between calculation results and experimental data is expected if more reliable experimental data can be obtained.
      번역하기

      In equilibrium, 304 stainless steel has only γ-austenite phase below about 1170℃ and solutes are uniformly distributed in γ-austenite. Due to incomplete solid-state diffusion, it has retained δ-ferrite as well as γ-austenite and the solute distr...

      In equilibrium, 304 stainless steel has only γ-austenite phase below about 1170℃ and solutes are uniformly distributed in γ-austenite. Due to incomplete solid-state diffusion, it has retained δ-ferrite as well as γ-austenite and the solute distribution becomes inhomogeneous in each phase. To further understand the solidification behavior of 304 stainless steel, the variation of δ-ferrite amount with temperature and the solute concentration in each phase across the phase boundary are calculated in this study. The calculated solute contents at the interface are in good agreement with experimental data available. It is shown that the equilibrium calculation using 304 steel composition itself produces better results than using equivalent composition. The calculated amounts of retained δ-ferrite using 304 equivalent composition are somewhat higher than experimentally observed values. Much better agreement between calculation results and experimental data is expected if more reliable experimental data can be obtained.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼