RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Artificial neural network algorithm comparison for exchange rate prediction

      한글로보기

      https://www.riss.kr/link?id=A107037245

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      At the end of 1997, the volatility of the exchange rate intensified as the nation's exchange rate system was converted into a free-floating exchange rate system. As a result, managing the exchange rate is becoming a very important task, and the need f...

      At the end of 1997, the volatility of the exchange rate intensified as the nation's exchange rate system was converted into a free-floating exchange rate system. As a result, managing the exchange rate is becoming a very important task, and the need for forecasting the exchange rate is growing. The exchange rate prediction model using the existing exchange rate prediction method, statistical technique, cannot find a nonlinear pattern of the time series variable, and it is difficult to analyze the time series with the variability cluster phenomenon. And as the number of variables to be analyzed increases, the number of parameters to be estimated increases, and it is not easy to interpret the meaning of the estimated coefficients. Accordingly, the exchange rate prediction model using artificial neural network, rather than statistical technique, is presented. Using DNN, which is the basis of deep learning among artificial neural networks, and LSTM, a recurrent neural network model, the number of hidden layers, neurons, and activation function changes of each model found the optimal exchange rate prediction model. The study found that although there were model differences, LSTM models performed better than DNN models and performed best when the activation function was Tanh.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼