RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      A Teleoperation System for Micro Positioning with Haptic Feedback

      한글로보기

      https://www.riss.kr/link?id=A104902877

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper presents the research work on a 1 Degree of Freedom (DOF) macro-micro teleoperation system which enables human operator to perform complex task in micro environment such as cell insertion with the capability of haptic feedback. To reach sub...

      This paper presents the research work on a 1 Degree of Freedom (DOF) macro-micro teleoperation system which enables human operator to perform complex task in micro environment such as cell insertion with the capability of haptic feedback. To reach submicron resolution, a nano-motion piezo actuator was used as the slave robot and a servo DC motor was used as the master robot. Force sensors were implemented at both ends for haptic feedback and a microscope equipped with camera was employed for real-time visual feedback. The hysteresis nonlinearity of the piezo motor was modeled using LuGre friction model and compensated for. A Sliding Mode Based Impedance Controller (SMBIC) was designed at the slave side to ensure position tracking while an impedance force controller was designed at the master side to ascertain tracking of the force. Control parameters were chosen based on Llewellyn stability criteria such that the entire system stays stable against parameter uncertainties and constant time delay. The experimental results demonstrated capability of the proposed control frameworks in desirable tracking of the position and force signals while the entire system remained stable. The results of this study can be used for complex tasks in micron environment such as cell insertion.

      더보기

      참고문헌 (Reference)

      1 M. Boukhnifer, "Wave-based passive control for transparent micro-teleoperation system" 601-615, 2006

      2 R. Seifabadi, "To enhance transparency of a piezo-actuated tele-micromanipulator using passive bilateral control" 28 : 689-703, 2010

      3 H. C. Cho, "Stable bilateral teleoperation under a time delay using a robust impedance control" 15 : 611-625, 2005

      4 D. A. Lawrence, "Stability and transparency in bilateral teleoperation" 9 (9): 625-637, 1992

      5 H. C. Cho, "Sliding-model-based impedance controller for bilateral teleoperation under varying time-delay" 1025-1030, 2001

      6 R. Seifabadi, "Robust impedance control for a delayed telemanipulator considering hysteresis nonlinearity of piezoactuated slave robot" 63-72, 2008

      7 W. R. Ferrell, "Remote manipulation with transmission delay" 24-32, 1966

      8 R. Seifabadi, "Passive bilateral control of a teleoperation system considering hysteresis nonlinearity of the slave robot" 83-93,, 2008

      9 A. Bergander, "PZT based manipulators for cell biology" 193-196, 2001

      10 H. Habibollahi, "Multirate prediction control of piezoelectric actuators" 17 (17): 15774-15779, 2008

      1 M. Boukhnifer, "Wave-based passive control for transparent micro-teleoperation system" 601-615, 2006

      2 R. Seifabadi, "To enhance transparency of a piezo-actuated tele-micromanipulator using passive bilateral control" 28 : 689-703, 2010

      3 H. C. Cho, "Stable bilateral teleoperation under a time delay using a robust impedance control" 15 : 611-625, 2005

      4 D. A. Lawrence, "Stability and transparency in bilateral teleoperation" 9 (9): 625-637, 1992

      5 H. C. Cho, "Sliding-model-based impedance controller for bilateral teleoperation under varying time-delay" 1025-1030, 2001

      6 R. Seifabadi, "Robust impedance control for a delayed telemanipulator considering hysteresis nonlinearity of piezoactuated slave robot" 63-72, 2008

      7 W. R. Ferrell, "Remote manipulation with transmission delay" 24-32, 1966

      8 R. Seifabadi, "Passive bilateral control of a teleoperation system considering hysteresis nonlinearity of the slave robot" 83-93,, 2008

      9 A. Bergander, "PZT based manipulators for cell biology" 193-196, 2001

      10 H. Habibollahi, "Multirate prediction control of piezoelectric actuators" 17 (17): 15774-15779, 2008

      11 J. J. Tzen, "Modeling of piezoelectric actuator for compensation and controller design" 27 : 70-86, 2003

      12 D. Song, "Modeling of piezo actuator’s nonlinear and frequency dependent dynamics" 9 (9): 391-410, 1999

      13 S. Yu, "Microrobotic cell injection" 620-625, 2001

      14 H. C. Cho, "Impedance controller design of internet-based teleoperation using absolute stability concept" 2256-2261, 2002

      15 S. Mittal, "Hysteresis compensation in electromagnetic actuators through preisach model inversion" 5 (5): 394-409, 2000

      16 A. Reimers, "Fast preisach-based magnetization model and fast inverse hysteresis model" 34 (34): 3857-3866, 1998

      17 D. Mayergoyz, "Dynamic preisach models of hysteresis" 24 (24): 2925-2927, 1988

      18 M. Gafvert, "Comparison of Two Friction Model" Lunde Institute of Technology 1996

      19 A. Kawaji, "Calibration for contact type of micro-manipulation" 2 : 715-720, 1999

      20 M. Boukhnifer, "Bilateral control of teleoperators under time delay and scaling factors" 6972-6977, 2005

      21 Y. Yokokohji, "Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment" 10 (10): 605-620, 1994

      22 J. J. Slotine, "Applied Nonlinear Control" Prentice Hall International Inc. 1991

      23 F. J. Lin, "An adaptive recurrent radial basis function network tracking controller for a two-dimensional piezo-positioning stage" 55 (55): 183-198, 2008

      24 F. J. Lin, "Adaptive wavelet neural network control with hysteresis estimation for piezo-positioning mechanism" 17 (17): 432-444, 2006

      25 K. Hashtrudi-Zaad, "Adaptive transparent impedance reflecting teleoperation" 1369-1374, 1996

      26 H. J. Shieh, "Adaptive displacement control with hysteresis modeling for piezoactuated positioning mechanism" 53 (53): 905-914, 2006

      27 S. S. Haykin, "Active Network Theory" Addison-Wesley 1970

      28 C. Canudas de wit, "A new model for control of systems with friction" 40 (40): 419-425, 1995

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.35 0.6 1.07
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.88 0.73 0.388 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼