RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      액화천연가스(LNG)를 사용한 수소 생산 및 액화 공정 개발 = Design and Analysis of Hydrogen Production and Liquefaction Process by Using Liquefied Natural Gas

      한글로보기

      https://www.riss.kr/link?id=A107402804

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Compare to the gaseous hydrogen, liquid hydrogen has various advantages: easy to transport, high energy density, and low risk of explosion. However, the hydrogen liquefaction process is highly energy intensive because it requires lots of energy for re...

      Compare to the gaseous hydrogen, liquid hydrogen has various advantages: easy to transport, high energy density, and low risk of explosion. However, the hydrogen liquefaction process is highly energy intensive because it requires lots of energy for refrigeration. On the other hand, the cold energy of the liquefied natural gas (LNG) is wasted during the regasification. It means there are opportunities to improve the energy efficiency of the hydrogen liquefaction process by recovering wasted LNG cold energy. In addition, hydrogen production by natural gas reforming is one of the most economical ways, thus LNG can be used as a raw material for hydrogen production. In this study, a novel hydrogen production and liquefaction process is proposed by using LNG as a raw material as well as a cold source. To develop this process, the hydrogen liquefaction process using hydrocarbon mixed refrigerant and the helium-neon refrigerant is selected as a base case design. The proposed design is developed by applying LNG as a cold source for the hydrogen precooling. The performance of the proposed process is analyzed in terms of energy consumption and exergy efficiency, and it is compared with the base case design. As the result, the proposed design shows 17.9% of energy reduction and 11.2% of exergy efficiency improvement compare to the base case design.

      더보기

      참고문헌 (Reference)

      1 한단비, "수소액화공정에서 LNG 냉열 적용에 관한 시뮬레이션 연구" 한국수소및신에너지학회 31 (31): 33-40, 2020

      2 Baccioli, A., "Small Scale Bio-LNG Plant: Comparison of Different Biogas Upgrading Techniques" 217 : 328-335, 2018

      3 Chen, J., "Production of Hydrogen by Methane Steam Reforming Coupled with Catalytic Combustion in Integrated Microchannel Reactors" 11 (11): 2045-, 2018

      4 Alabdulkarem, A., "Optimization of Propane Pre-cooled Mixed Refrigerant LNG Plant" 31 (31): 1091-1098, 2011

      5 Aasadnia, M., "Large-scale Liquid Hydrogen Production Methods and Approaches: A Review" 212 : 57-83, 2018

      6 Kuendig, A, "Large Scale Hydrogen Liquefaction in Combination with LNG Re-gasification" 3326-3333, 2006

      7 Sadaghiani, M. S., "Introducing and Energy Analysis of a Novel Cryogenic Hydrogen Liquefaction Process Configuration" 42 (42): 6033-6050, 2017

      8 Yang J., "Integrated Hydrogen Liquefaction Process with Steam Methane Reforming by Using Liquefied Natural Gas Cooling System" 255 : 113840-, 2019

      9 Sharma, S., "Hydrogen the Future Transportation Fuel: From Production to Applications" 43 : 1151-1158, 2015

      10 Drnevich, R., "Hydrogen Delivery: Liquefaction and Compression" 2003

      1 한단비, "수소액화공정에서 LNG 냉열 적용에 관한 시뮬레이션 연구" 한국수소및신에너지학회 31 (31): 33-40, 2020

      2 Baccioli, A., "Small Scale Bio-LNG Plant: Comparison of Different Biogas Upgrading Techniques" 217 : 328-335, 2018

      3 Chen, J., "Production of Hydrogen by Methane Steam Reforming Coupled with Catalytic Combustion in Integrated Microchannel Reactors" 11 (11): 2045-, 2018

      4 Alabdulkarem, A., "Optimization of Propane Pre-cooled Mixed Refrigerant LNG Plant" 31 (31): 1091-1098, 2011

      5 Aasadnia, M., "Large-scale Liquid Hydrogen Production Methods and Approaches: A Review" 212 : 57-83, 2018

      6 Kuendig, A, "Large Scale Hydrogen Liquefaction in Combination with LNG Re-gasification" 3326-3333, 2006

      7 Sadaghiani, M. S., "Introducing and Energy Analysis of a Novel Cryogenic Hydrogen Liquefaction Process Configuration" 42 (42): 6033-6050, 2017

      8 Yang J., "Integrated Hydrogen Liquefaction Process with Steam Methane Reforming by Using Liquefied Natural Gas Cooling System" 255 : 113840-, 2019

      9 Sharma, S., "Hydrogen the Future Transportation Fuel: From Production to Applications" 43 : 1151-1158, 2015

      10 Drnevich, R., "Hydrogen Delivery: Liquefaction and Compression" 2003

      11 Dincer, I., "Green Methods for Hydrogen Production" 37 (37): 1954-1971, 2012

      12 Bidar, B., "Energy and Exergo-economic Assessments of Gas Turbine Based CHP Systems: A Case Study of SPGC Utility Plant" 37 (37): 209-223, 2018

      13 Krasae-in S., "Development of Largescale Hydrogen Liquefaction Processes from 1898 to 2009" 35 (35): 4524-4533, 2010

      14 Zheng J., "Development of High Pressure Gaseous Hydrogen Storage Technologies" 37 (37): 1048-1057, 2012

      15 Quack, H., "Conceptual Design of a High Efficiency Large Capacity Hydrogen Liquefier" 613 (613): 255-263, 2002

      16 Lee, I., "Conceptual Design and Exergy Analysis of Combined Cryogenic Energy Storage and LNG Regasification Processes: Cold and Power Integration" 140 : 106-115, 2017

      17 Jensen, J. E, "Brookhaven national laboratory selected cryogenic data notebook: Sections I-IX" Brookhaven National Laboratory 1980

      18 Ansarinasab, H., "An Exergy-based Investigation on Hydrogen Liquefaction Plant-Exergy, Exergoeconomic, and Exergoenvironmental Analyses" 210 : 530-541, 2019

      19 Asadnia, M., "A Novel Hydrogen Liquefaction Process Configuration with Combined Mixed Refrigerant Systems" 42 (42): 15564-15585, 2017

      20 Outlook, B. E, "2019 Edition"

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-12-02 학술지명변경 한글명 : 화학공학 -> Korean Chemical Engineering Research(HWAHAK KONGHAK) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-08-25 학술지명변경 외국어명 : Korean Chem. Eng. Res. -> Korean Chemical Engineering Research KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-09-27 학회명변경 영문명 : The Korean Institute Of Chemical Engineers -> The Korean Institute of Chemical Engineers KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.43 0.43 0.4
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.37 0.35 0.496 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼