The complete elliptic integral of the first kind K(k) is defined for 0 < k < 1 by K(k) := π /2Ɵ=0dƟ/√1 − k2 sin2 ƟThe real number k is called the modulus of the elliptic integral. The complementary modulus is k' = √1 − k2 (0 < k' ...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A104869087
K. R. Vasuki (University of Mysore) ; G. Sharath (University of Mysore) ; N. Bhaskar (Maharaja Institute of Technology)
2010
English
KCI등재후보,SCOPUS
학술저널
29-56(28쪽)
0
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
The complete elliptic integral of the first kind K(k) is defined for 0 < k < 1 by K(k) := π /2Ɵ=0dƟ/√1 − k2 sin2 ƟThe real number k is called the modulus of the elliptic integral. The complementary modulus is k' = √1 − k2 (0 < k' ...
The complete elliptic integral of the first kind K(k) is defined for 0 < k < 1 by K(k) := π /2Ɵ=0dƟ/√1 − k2 sin2 ƟThe real number k is called the modulus of the elliptic integral. The complementary modulus is k' = √1 − k2 (0 < k' < 1).
Let ⋋ be a positive integer. The equation K(k') = √K(k),defines a unique real number k(k') (0 < k' < 1) called the singular modulus of K(k).
In this paper, we establish certain general formulas for evaluating k(λ), by employing Ramanujan’s modular equation.
참고문헌 (Reference)
1 S. Y. Kang, "Some Theorems on the Roger's-Ramanujan Continued Fraction and Associated Theta Function Identities in Ramanujan's lost notebook" 3 : 91-111, 1999
2 C. Adiga, "Some New Modular Relations for the Cubic Functions"
3 K. G. Ramanathan, "Remarks on some series considered by Ramanujan" 46 : 107-136, 1982
4 B. C. Berndt, "Ramanujan's Notebooks, Part Ⅲ" Springer-verlag 1991
5 J. M., "Pi and AGM" Wiley 1987
6 S. Ramanujan, "Notebooks (2 volumes)" Tata Institute of Fundamental Research 1957
7 C. Adiga, "Modular equations in the theory of signature 3 and P-Q identities" 7 : 33-40, 2003
8 C. G. J. Jacobi, "Gesammelte Werke, Vol. Ⅰ" Chelsea 1969
9 C. G. J. Jacobi, "Fundamenta Nova Theoriae Functionum Ellipticarum" Regiomonti 1829
10 J. Yi, "Evaluations of the Rogers-Ramanujan's continued fraction R(q) by Modular equations" 97 : 103-127, 2001
1 S. Y. Kang, "Some Theorems on the Roger's-Ramanujan Continued Fraction and Associated Theta Function Identities in Ramanujan's lost notebook" 3 : 91-111, 1999
2 C. Adiga, "Some New Modular Relations for the Cubic Functions"
3 K. G. Ramanathan, "Remarks on some series considered by Ramanujan" 46 : 107-136, 1982
4 B. C. Berndt, "Ramanujan's Notebooks, Part Ⅲ" Springer-verlag 1991
5 J. M., "Pi and AGM" Wiley 1987
6 S. Ramanujan, "Notebooks (2 volumes)" Tata Institute of Fundamental Research 1957
7 C. Adiga, "Modular equations in the theory of signature 3 and P-Q identities" 7 : 33-40, 2003
8 C. G. J. Jacobi, "Gesammelte Werke, Vol. Ⅰ" Chelsea 1969
9 C. G. J. Jacobi, "Fundamenta Nova Theoriae Functionum Ellipticarum" Regiomonti 1829
10 J. Yi, "Evaluations of the Rogers-Ramanujan's continued fraction R(q) by Modular equations" 97 : 103-127, 2001
11 H. Muzaffar, "Evaluation of complete Elliptic integrals of the first kind at singular moduli" 10 : 1633-1660, 2006
12 K. R. Vasuki, "Certain Identities for Ramanujan-Gollnitz-Gordon Continued Fraction" 187 : 87-95, 2006
13 S. Bhargava, "A new class of modular equations akin to Ramanujan's P-Q eta-function identities and some evaluations there from" 5 : 37-48, 2002
q-analogues of some results for the Apostol-Euler polynomials
Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials
SOME IDENTITIES FOR THE BERNOULLI, THE EULER AND THE GENOCCHI NUMBERS AND POLYNOMIALS
(4, d)-Sigraph and Its Applications
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2024 | 평가예정 | 해외DB학술지평가 신청대상 (해외등재 학술지 평가) | |
2021-01-01 | 평가 | 등재학술지 선정 (해외등재 학술지 평가) | ![]() |
2020-12-01 | 평가 | 등재 탈락 (해외등재 학술지 평가) | |
2013-10-01 | 평가 | 등재학술지 선정 (기타) | ![]() |
2011-01-01 | 평가 | 등재후보학술지 유지 (기타) | ![]() |
2008-04-08 | 학회명변경 | 한글명 : 장전수리과학회 -> 장전수학회(章田數學會) | ![]() |
2008-01-01 | 평가 | SCOPUS 등재 (신규평가) | ![]() |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.16 | 0.16 | 0.24 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.29 | 0.27 | 0.609 | 0.15 |