RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI우수등재

      A Time-Strain Separable K-BKZ Constitutive Equation to Describe the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids

      한글로보기

      https://www.riss.kr/link?id=A103517486

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The present study has been designed to describe the nonlinear viscoelastic behavior of concentrated polymer systems in large amplitude oscillatory shear (LAOS) flow fields using a time-strain separable K-BKZ constitutive equation (i.e., Wagner model)....

      The present study has been designed to describe the nonlinear viscoelastic behavior of concentrated polymer systems in large amplitude oscillatory shear (LAOS) flow fields using a time-strain separable K-BKZ constitutive equation (i.e., Wagner model). Using an Advanced Rheometric Expansion System (ARES), the dynamic viscoelastic behavior of aqueous poly(ethylene oxide) (PEO) solutions with various molecular weights and different concentrations has been investigated with a various combination of several fixed strain amplitudes and constant angular frequencies. The linear dynamic data (storage modulus and loss modulus) over a wide range of angular frequencies were obtained to determine the relaxation spectrum parameters and the stress relaxation moduli at various deformation magnitudes were measured to determine the damping function. The effects of the number of relaxation spectrum parameters and damping functions on the prediction results of the Wagner model were examined in depth. The nonlinear viscoelastic functions were analyzed by the aid of 3D plots and predicted over a wide range of strain amplitudes to evaluate the overall predictability of the Wagner model. The main findings obtained from this study are summarized as follows : (1) The Lissajous patterns predicted by the Wagner model are in good coincidence with the experimentally obtained stress-strain rate hysteresis loops both in linear and nonlinear viscoelastic regions and are independent of the number of relaxation spectrum parameters used in the calculation of memory function. (2) The effect of damping function on the predictive ability of the Wagner model is more sensitive than that of memory function. When the damping function is smaller than that of the experimental data, the stress amplitude predicted by the Wagner model also becomes smaller. (3) The Wagner model predictions are closely coincident with the experimental results in the linear viscoelastic region. As the strain amplitude is increased, the predicted nonlinear viscoelastic functions are somewhat larger than that of the experimental data. Nevertheless, all trends of the nonlinear viscoelastic behavior are in good agreement with the experimental results in a qualitative sense. (4) The Wagner model predicts the first harmonic loss modulus more exactly than the first harmonic storage modulus. As the strain amplitude is increased, the first harmonic storage modulus is somewhat overpredicted. The third and fifth harmonic storage and loss moduli exhibit an overshoot or an undershoot at large strain amplitudes. This constitutive equation has an ability to qualitatively describe well such dramatic behavioral changes.

      더보기

      참고문헌 (Reference)

      1 배준웅, "정상전단유동의 급개시에 따른 폴리에틸렌옥사이드 수용액의 응력성장거동" 한국섬유공학회 50 (50): 292-307, 2013

      2 J. D. Ferry, "Viscoelastic Properties of Polymers" John Wiley & Sons 1980

      3 E. Behzadfar, "Viscoelastic Properties and Constitutive Modeling of Bitumen" 108 : 391-399, 2013

      4 L. J. Zapas, "Viscoelastic Behavior under Large Deformations" 70A : 525-532, 1966

      5 A. J. Giacomin, "Validity of Separable BKZ Model for Large Amplitude Oscillatory Shear" 37 : 811-826, 1993

      6 P. Partal, "Transient Flow of O/W Sucrose Palmitate Emulsions" 41 : 33-41, 1999

      7 C. Gallegos, "Transient Flow of Mayonnaise Described by A Nonlinear Viscoelasticity Model" 23 : 153-168, 1992

      8 M. Doi, "The Theory of Polymer Dynamics" Oxford University Press 1986

      9 P. N. Georgelos, "The Role of Solution Structure in Apparent Thickening Behavior of Dilute PEO/Water Systems" 27 : 191-204, 1988

      10 M. R. Mackley, "The Rheological Characterization of Polymeric and Colloidal Fluids" 49 : 2551-2565, 1994

      1 배준웅, "정상전단유동의 급개시에 따른 폴리에틸렌옥사이드 수용액의 응력성장거동" 한국섬유공학회 50 (50): 292-307, 2013

      2 J. D. Ferry, "Viscoelastic Properties of Polymers" John Wiley & Sons 1980

      3 E. Behzadfar, "Viscoelastic Properties and Constitutive Modeling of Bitumen" 108 : 391-399, 2013

      4 L. J. Zapas, "Viscoelastic Behavior under Large Deformations" 70A : 525-532, 1966

      5 A. J. Giacomin, "Validity of Separable BKZ Model for Large Amplitude Oscillatory Shear" 37 : 811-826, 1993

      6 P. Partal, "Transient Flow of O/W Sucrose Palmitate Emulsions" 41 : 33-41, 1999

      7 C. Gallegos, "Transient Flow of Mayonnaise Described by A Nonlinear Viscoelasticity Model" 23 : 153-168, 1992

      8 M. Doi, "The Theory of Polymer Dynamics" Oxford University Press 1986

      9 P. N. Georgelos, "The Role of Solution Structure in Apparent Thickening Behavior of Dilute PEO/Water Systems" 27 : 191-204, 1988

      10 M. R. Mackley, "The Rheological Characterization of Polymeric and Colloidal Fluids" 49 : 2551-2565, 1994

      11 P. R. de Souza Mendes, "The Quasilinear Large-Amplitude Viscoelastic Regime and Its Significance in the Rheological Characterization of Soft Matter" 58 : 537-561, 2014

      12 N. W. Tschoegl, "The Phenomenological Theory of Linear Viscoelastic Behavior" Springer-Verlag 1989

      13 V. H. Rolon-Garrido, "The Damping Function in Rheology" 48 : 245-284, 2009

      14 K. W. Song, "Steady Shear Flow Properties of Aqueous Poly (ethylene oxide) Solutions" 29 : 193-203, 1999

      15 C. L. Mallows, "Some Comments on Cp" 15 : 661-675, 1973

      16 S. Bekiranov, "Solution Behavior of Poly(ethylene oxide) in Water as a Function of Temperature and Pressure" 55 : 577-585, 1997

      17 M. J. Reimers, "Sliding Plate Rheometer Studies of Concentrated Polystyrene Solutions : Large Amplitude Oscillatory Shear of a Very High Molecular Weight Polymer in Diethyl Phthalate" 40 : 167-186, 1996

      18 K. W. Song, "Rheological Characterization of Aqueous Poly(ethylene oxide) Solutions (IV): Nonlinear Stress Relaxation in Single-Step Large Shear Deformations" 36 : 383-395, 1999

      19 K. W. Song, "Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions (III) : Determination of Discrete Relaxation Spectrum and Relaxation Modulus from Linear Viscoelastic Functions" 35 : 550-561, 1998

      20 C. J. Carriere, "Prediction of the Nonlinear Transient and Oscillatory Rheological Behavior of Flour Suspensions Using a Strain-Separable Integral Constitutive Equation" 47 : 219-231, 2002

      21 H. M. Laun, "Prediction of Elastic Strains of Polymer Melts in Shear and Elongation" 30 : 459-501, 1986

      22 K. R. Shah, "Polyox (polyethylene oxide) Multifunctional Polymer in Novel Drug Delivery System" 6 : 95-101, 2014

      23 F. E. Bailey, Jr, "Poly(ethylene oxide)" Academic Press 1976

      24 K. Osaki, "On the Damping Function of Shear Relaxation Modulus for Entangled Polymers" 32 : 429-437, 1993

      25 X. Li, "Nonlinearity in Large Amplitude Oscillatory Shear (LAOS) of Different Viscoelastic Materials" 53 : 1255-1274, 2009

      26 C. Valencia, "Nonlinear Viscoelasticity Modeling of Tomato Paste Products" 36 : 911-919, 2003

      27 J. Ren, "Nonlinear Viscoelastic Properties of Layered-Silicate-Based Intercalated Nanocomposites" 36 : 4443-4451, 2003

      28 A. Kaye, "Non-Newtonian Flow in Incompressible Fluids"

      29 J. M. Madiedo, "Modeling of the Nonlinear Rheological Behavior of a Lubricating Greese at Low Shear Rates" 122 : 590-596, 2000

      30 J. M. Dealy, "Melt Rheology and Its Role in Plastics Processing : Theory and Applications" Van Nostrand Reinhold 1990

      31 C. Bengoechea, "Linear and Nonlinear Viscoelasticity of Emulsions Containing Carob Protein as Emulsifier" 87 : 124-135, 2008

      32 P. R. Soskey, "Large Step Shear Strain Experiments with Parallel-Disk Rotational Rheometers" 28 : 625-645, 1984

      33 K. Hyun, "Large Amplitude Oscillatory Shear as a Way to Classify the Complex Fluids" 107 : 51-65, 2002

      34 M. R. B. Mermet-Guyennet, "LAOS : The Strain Softening/Strain Hardening Paradox" 59 : 21-32, 2015

      35 I. McDougall, "Inferring Meaningful Relaxation Spectra from Experimental Data" 58 : 779-797, 2014

      36 S. H. Lee, "Experimental and Theoretical Study on Shear Flow Behavior of Polypropylene/Layered Silicate Nanocomposites" 17 : 191-214, 2008

      37 R. I. Tanner, "Engineering Rheology" Oxford University Press 2000

      38 A. S. Lodge, "Elastic Liquids" Academic Press 1964

      39 K. W. Song, "Dynamic Viscoelastic Properties of Aqueous Poly(ethylene oxide) Solutions" 29 : 295-307, 1999

      40 장갑식, "Discrete Fourier Transform Analysis to Characterize the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids" 한국섬유공학회 53 (53): 317-327, 2016

      41 J. Honerkamp, "Determination of the Relaxation Spectrum by a Regularization Method" 22 : 4372-4377, 1989

      42 M. Baumgaertel, "Determination of Discrete Relaxation and Retardation Time Spectra from Dynamic Mechanical Data" 28 : 511-519, 1989

      43 H. M. Laun, "Description of the Nonlinear Shear Behavior of a Low-Density Polyethylene Melt by Means of an Experimentally Determined Strain-Dependent Memory Function" 17 : 1-15, 1978

      44 K. Osaki, "Constitutive Equation and Damping Function for Entangled Polymers" 11 : 287-291, 1999

      45 S. Kawaguchi, "Aqueous Solution Properties of Oligo- and Poly(ethylene oxide) by Static Light Scattering and Intrinsic Viscosity" 38 : 2885-2891, 1997

      46 M. H. Wagner, "Analysis of Time-Dependent Nonlinear Stress Growth Data for Shear and Elongational Flow of a Low-Density Branched Polyethylene Melt" 15 : 136-142, 1976

      47 A. C. Papanastasiou, "An Integral Constitutive Equation for Mixed Flows : Viscoelastic Characterization" 27 : 387-410, 1983

      48 B. Bernstein, "A Study of Stress Relaxation with Finite Strain" 7 : 391-410, 1963

      49 F. A. Morrison, "A Study of Shear Stress Relaxation Anomalies in Binary of Monodisperse Polystyrenes" 30 : 943-950, 1992

      50 장갑식, "A Simple Analysis Method to Predict the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids" 한국섬유공학회 52 (52): 159-166, 2015

      51 S. A. Rogers, "A Sequence of Physical Processes Determined and Quantified in Large-Amplitude Oscillatory Shear (LAOS) : Application to Theoretical Nonlinear Models" 56 : 1-25, 2012

      52 F. J. Stadler, "A New Method for the Calculation of Continuous Relaxation Spectra from Dynamic-Mechanical Data" 48 : 33-49, 2009

      53 K. S. Cho, "A Geometrical Interpretation of Large Amplitude Oscillatory Shear Response" 49 : 747-758, 2005

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 계속평가 신청대상 (등재유지)
      2017-01-01 평가 우수등재학술지 선정 (계속평가)
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-09-03 학술지명변경 외국어명 : The Korean Fiber Soceity -> Textile Science and Engineering KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-03-05 학술지명변경 외국어명 : The Korean Fiber Soceity -> Textile Science and Engineering KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.13 0.13 0.15
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.17 0.17 0.29 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼