RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Acceleration of microalgal biofilm formation on PET by surface engineering

      한글로보기

      https://www.riss.kr/link?id=A107921104

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Biofilm-based microalgal cultivation has recently received great attention owing to its low harvesting cost, but the main problem in practicing it is the low rate of attachment on solid carriers. The aim of this research is to introduce novel physical...

      Biofilm-based microalgal cultivation has recently received great attention owing to its low harvesting cost, but the main problem in practicing it is the low rate of attachment on solid carriers. The aim of this research is to introduce novel physical and wet chemical surface engineering methods to provide more favorable polymeric surfaces for microalgal adhesion. PET threads were used as a substrate in the treatments. The surface of the threads was treated with chromic acid, sodium hydroxide and sandpaper. The chemical composition, surface morphology, topography and contact angle of the threads were characterized. The threads were placed in a biofilm-based cylindrical photobioreactor as a bed for attachment. Two freshwater single-cell microalgae, Scenedesmus dimorphus and Chlorella vulgaris, were cultivated in the photobioreactor to assess the attachment rate of the threads. The analysis of SEM and AFM images confirmed the creation of new grooves. The AFM image analysis showed 323%, 184% and 11.5% increase in the surface roughness, while there were 73%, 51%, and 30% rates of reduction in the contact angles for the treatments with acid, sandpaper and base, respectively. Creation of new grooves, increase of the surface roughness and decrease of the contact angle led to an increase in the microalgae attachment rate. The best results were achieved with acid treatment.
      It led to a remarkable increase in the attachment rate of S. dimorphus. However, the attachment of C. vulgaris cells was not efficient. This research is the first to apply a surface engineering method to increase the microalgal attachment rate in biofilm-based systems. The insight that is provided can be of benefit for further studies in this field.

      더보기

      참고문헌 (Reference)

      1 T. E. Irving, 92 : 283-, 2011

      2 C. Gudin, 6 : 73-, 1986

      3 J. Cao, 131 : 064505-, 2009

      4 N. Boelee, 45 : 5925-, 2011

      5 Y. Cui, 6 : 44-, 2013

      6 A. Ozkan, 114 : 542-, 2012

      7 Q. Wei, 2 : 446-, 2008

      8 Y. Shen, 37 : 441-, 2014

      9 J. F. Schumacher, 23 : 55-, 2007

      10 M. B. Johnson, 85 : 525-, 2010

      1 T. E. Irving, 92 : 283-, 2011

      2 C. Gudin, 6 : 73-, 1986

      3 J. Cao, 131 : 064505-, 2009

      4 N. Boelee, 45 : 5925-, 2011

      5 Y. Cui, 6 : 44-, 2013

      6 A. Ozkan, 114 : 542-, 2012

      7 Q. Wei, 2 : 446-, 2008

      8 Y. Shen, 37 : 441-, 2014

      9 J. F. Schumacher, 23 : 55-, 2007

      10 M. B. Johnson, 85 : 525-, 2010

      11 M. Gross, 9 : 38-, 2016

      12 D. S. Bag, 71 : 1041-, 1999

      13 J. M. Goddard, 32 : 698-, 2007

      14 K. Holmberg, 15 : 309-, 1985

      15 L. Penn, 5 : 809-, 1994

      16 E. Sheng, 9 : 47-, 1995

      17 S. Tho, 59 : 5-, 2012

      18 Q. Huang, 3 : 318-, 2017

      19 L. Katarzyna, 42 : 1418-, 2015

      20 S. Chatterjee, 63 : 269-, 2014

      21 A. Pathan, 12 : 32-, 2010

      22 T. Norton, 16 : 199-, 1998

      23 T. Tolker-Nielsen, 182 : 6482-, 2000

      24 N. Cordeiro, 87 : 2367-, 2012

      25 R. M. Donlan, 8 : 881-, 2002

      26 M. Drobota, 77 : 131-, 2015

      27 P. Slepička, 7 : 535-, 2013

      28 H. Zhang, 181 : 801-, 2010

      29 H. Wang, 287 : 541-, 2009

      30 Z. Fang, 41 : 1627-, 2013

      31 I. Donelli, 95 : 1542-, 2010

      32 Y. Liu, 46 : 117-, 2005

      33 W. Hao, 10 : 125-, 2017

      34 M. Raposo, 1 : 758-, 2007

      35 M. Taufik, 30 : 161-, 2017

      36 Y. Cui, 112 : 485-, 2013

      37 H. K. Webb, 24 : 39-, 2009

      38 P. Blais, 47 : 636-, 1974

      39 L. K. Ista, 70 : 4151-, 2004

      40 M. E. Callow, 34 : 333-, 1994

      41 R. L. Fletcher, 27 : 303-, 1992

      42 A. Ozkan, 169 : 2011

      43 D. Manheim, 32 : 946-, 2013

      44 P. Bhattacharya, 114 : 16556-, 2010

      45 F. R. Trainor, 1 : 15-, 1965

      46 N. A. Eckardt, 22 : 2924-, 2010

      47 L. D. Renner, 36 : 347-, 2011

      48 A. Ozkan, 112 : 287-, 2013

      49 L. Moreno, 6 : 17-, 2015

      50 J. -H. Wang, 92 : 331-, 2018

      51 A. Lizzul, 151 : 12-, 2014

      52 J. B. Vander Wiel, 7 : 4402-, 2017

      53 F. Akgül, 17 : 609-, 2017

      54 S. Mayeli, 38 : 515-, 2005

      55 K. J. Edwards, 180 : 19-, 2001

      56 X. Chen, 13 : 142-, 2014

      57 M. Sirmerova, 25 : 1687-, 2013

      58 M. Lurling, "The smell of water: grazer-induced colony formation in Scenedesmus" Wageningen Agricultural University 1999

      59 ASTM, "Standard practice for preparation of surfaces of plastics prior to adhesive bonding"

      60 B. Bhushan, "Modern tribology handbook, two volume set" CRC press 74-, 2000

      61 J. Kotai, "Instructions for preparation of modified nutrient solution z8"

      62 T. Bhaiji, "Enhancing microalgae attachment for biofilm-based photobioreactors" Cranfield University 2016

      63 M. Babu, "Effect of algal biofilm and operational conditions on nitrogen removal in waste stabilization ponds" CRC Press 2011

      64 R. Oliveira, "Biofilms in wastewater treatment: An interdisciplinary approach" International Water Association 2003

      65 Soroosh Danaee, "Assessment of phosphorescent paint effects on microalgae cultivation" 한국화학공학회 35 (35): 1144-1150, 2018

      66 R. Sekar, "Asian pacific phycology in the 21st century: Prospects and challenges" Springer 109-, 2004

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2016-06-21 학술지명변경 한글명 : The Korean Journal of Chemical Engineering -> Korean Journal of Chemical Engineering
      외국어명 : The Korean Journal of Chemical Engineering -> Korean Journal of Chemical Engineering
      KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-09-27 학회명변경 영문명 : The Korean Institute Of Chemical Engineers -> The Korean Institute of Chemical Engineers KCI등재
      2007-09-03 학술지명변경 한글명 : The Korean Journal of Chemical Engineeri -> The Korean Journal of Chemical Engineering
      외국어명 : The Korean Journal of Chemical Engineeri -> The Korean Journal of Chemical Engineering
      KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.92 0.72 1.4
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.15 0.94 0.403 0.14
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼