RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      The non-traditional heat exchangers type effect on two phase heat transfer during evaporation process

      한글로보기

      https://www.riss.kr/link?id=A107547067

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Enhancement of heat transfer during the evaporation process investigated experimentally. Sub-cooled carbon dioxide flows inside nontraditional heat exchangers;micropipe heat exchanger with internal diameter of 0.6 mm and a porous tube one filled with ...

      Enhancement of heat transfer during the evaporation process investigated experimentally. Sub-cooled carbon dioxide flows inside nontraditional heat exchangers;micropipe heat exchanger with internal diameter of 0.6 mm and a porous tube one filled with gravel sand with porosity of 39.8 %. The experiments were carried out at different operating conditions. It is found that the heat transfer coefficient of the micropipe heat exchangers reached twice of the porous tube heat exchanger. Correlations utilized in the literature were used to validate experimental results. Good conformity was obtained.

      더보기

      참고문헌 (Reference)

      1 A. S. Alshqirate, "The effect of heat exchanger type on twophase heat transfer coefficient and pressure drop" 25 (25): 377-390, 2012

      2 J. R. Thome, "State-of-the-art of two-phase flow and flow boiling heat transfer and pressure drop of CO2 in macro- and micro-channels" 28 (28): 1149-1168, 2005

      3 R. Das, "Prediction of porosity and thermal diffusivity in a porous fin using differential evolution algorithm" 23 : 27-39, 2015

      4 R. Das, "Prediction of heat generation in a porous fin from surface temperature" 31 (31): 2017

      5 S. C. Chapra, "Numerical Methods for Engineers" McGraw-Hill 1998

      6 A. F. Mills, "Heat and Mass Transfer" CRC Press 1995

      7 D. Tian, "Hall-petch effect and inverse hall-petch effect: a fractal unification" 26 (26): 1850083-, 2018

      8 F. P. Incropera, "Fundamentals of Heat and Mass Transfer" John Wiley and Sons 2002

      9 M. Kim, "Fundamental process and system design issues in CO2 vapor compression systems" 30 : 119-174, 2004

      10 Y. Wang, "Fractal derivative model for tsunami travelling" 27 (27): 2019

      1 A. S. Alshqirate, "The effect of heat exchanger type on twophase heat transfer coefficient and pressure drop" 25 (25): 377-390, 2012

      2 J. R. Thome, "State-of-the-art of two-phase flow and flow boiling heat transfer and pressure drop of CO2 in macro- and micro-channels" 28 (28): 1149-1168, 2005

      3 R. Das, "Prediction of porosity and thermal diffusivity in a porous fin using differential evolution algorithm" 23 : 27-39, 2015

      4 R. Das, "Prediction of heat generation in a porous fin from surface temperature" 31 (31): 2017

      5 S. C. Chapra, "Numerical Methods for Engineers" McGraw-Hill 1998

      6 A. F. Mills, "Heat and Mass Transfer" CRC Press 1995

      7 D. Tian, "Hall-petch effect and inverse hall-petch effect: a fractal unification" 26 (26): 1850083-, 2018

      8 F. P. Incropera, "Fundamentals of Heat and Mass Transfer" John Wiley and Sons 2002

      9 M. Kim, "Fundamental process and system design issues in CO2 vapor compression systems" 30 : 119-174, 2004

      10 Y. Wang, "Fractal derivative model for tsunami travelling" 27 (27): 2019

      11 J. H. He, "Fractal calculus and its geometrical explanation" 10 : 272-276, 2018

      12 Q. Wang, "Fractal calculus and its application to explanation of biomechanism of polar bear hairs" 26 (26): 2018

      13 R. Das, "Forward and inverse solutions of a conductive, convective and radiative cylindrical porous fin" 87 : 96-106, 2014

      14 P. X. Jiang, "Experimental investigation of convection heat transfer of CO2at super-critical pressures in vertical mini-tubes and in porous media" 24 (24): 1255-1270, 2004

      15 C. Y. Park, "Evaporation of CO2 in a horizontal smooth tube" 2005

      16 R. Das, "Estimating magnetic field strength in a porous fin from a surface temperature response" 56 (56): 1011-1013, 2020

      17 A. Alshqirate, "Dimensional analysis and empirical correlations for heat transfer and pressure drop in condensation and evaporation processes of flow inside micropipes: case study with carbon dioxide (CO2)" 34 (34): 89-96, 2012

      18 J. Pettersen, "Development of compact heat exchangers for CO2 air-conditioning systems" 21 (21): 180-193, 1998

      19 S. H. Yoon, "Characteristics of evaporative heat transfer and pressure drop of carbon dioxide and correlation development" 27 (27): 111-119, 2004

      20 C. Y. Park, "CO2 and R410A flow boiling heat transfer, pressure drop, and flow pattern at low temperatures in a horizontal smooth tube" 30 (30): 166-178, 2007

      21 K. Singh, "Approximate analytical method for porous stepped fins with temperature-dependent heat transfer parameters" 30 (30): 1-12, 2016

      22 P. H. Oosthuizen, "An Introduction to Convective Heat Transfer Analysis" McGraw-Hill 1999

      23 Y. Wang, "Amplitude-frequency relationship to a fractional duffing oscillator arising in microphysics and tsunami motion" 38 (38): 1008-1012, 2019

      24 M. Tarawneh, "A study of heat transfer and pressure drop during condensation and evaporation processes in porous media, using experimental work and dimensional analysis, case study of carbon dioxide (CO2)" 14 (14): 805-814, 2011

      25 M. Zhang, "A new time and spatial fractional heat conduction model for maxwell nano-fluid in porous medium" 78 (78): 1621-1636, 2019

      26 X. Li, "A fractal modification of the surface coverage model for an electrochemical arsenic sensor" 296 : 491-493, 2019

      27 Y. Wang, "A fractal derivative model for snow’s thermal insulation property" 23 (23): 2351-2354, 2019

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼