RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Numerical study of mechanical behaviour of tubular structures under dynamic compression

      한글로보기

      https://www.riss.kr/link?id=A107300985

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper presents a novel point of view for the performance investigation and optimization of energy absorber devices, which is numerically introduced using the finite element method employing corrugated tubes. The numerical results show that struct...

      This paper presents a novel point of view for the performance investigation and optimization of energy absorber devices, which is numerically introduced using the finite element method employing corrugated tubes. The numerical results show that structural or material softening leads to an optimal configuration at which the corrugated or circular tube achieves its peak performance. The performance and optimization parameters used in this study are absorbed crash energy and specific energy absorption. The force-displacement (f-d) diagram of the energy absorbers is divided into three parts for numerical investigation. The optimum point of each corrugated tube is observed when the values of energy absorption (EA) at different stages of the stroke (i.e., in the first, middle, and last portions of deformation) are almost equal or close to one another. Furthermore, the effect of material softening is discussed.
      The effects of cladding a ductile layer on f-d diagram, EA and deformation of thin-walled circular tubes are numerically investigated. Adding soft material layers oriented at 30° to 70° to the model can increase the performance of energy absorbers by approximately 10 % compared with the model that uses only the core material.

      더보기

      참고문헌 (Reference)

      1 W. Abramowicz, "Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically" 19 (19): 415-437, 1997

      2 P. H. Thornton, "The interplay of geometric and materials variables in energy absorption" 99 (99): 114-120, 1977

      3 S. C. Yuen, "The energy-absorbing characteristics of tubular structures with geometric and material modifications: an overview" 61 (61): 020802-, 2008

      4 W. Abramowicz, "The effective crushing distance in axially compressed thin-walled metal columns" 1 : 309-317, 1983

      5 A. Partovi, "Study of influence of superimposed hydrostatic pressure on ductility in ring compression test" 29 : 6581-6590, 2020

      6 N. Jones, "Structural Impact" Cambridge University Press 2011

      7 P. Bajaj, "Steels in additive manufacturing: a review of their microstructure and properties" 772 : 138633-, 2020

      8 M. A. Sofuoğlu, "Springback behavior of AA6082T6 tubes in three-point bending operation" 182 : 658-664, 2017

      9 S. S. Hsu, "Quasi-static and dynamic axial crushing of thin-walled circular stainless steel, mild steel and aluminium alloy tubes" 9 (9): 195-217, 2004

      10 T. Wierzbicki, "On the crushing mechanics of thin-walled structures" 50 (50): 727-734, 1983

      1 W. Abramowicz, "Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically" 19 (19): 415-437, 1997

      2 P. H. Thornton, "The interplay of geometric and materials variables in energy absorption" 99 (99): 114-120, 1977

      3 S. C. Yuen, "The energy-absorbing characteristics of tubular structures with geometric and material modifications: an overview" 61 (61): 020802-, 2008

      4 W. Abramowicz, "The effective crushing distance in axially compressed thin-walled metal columns" 1 : 309-317, 1983

      5 A. Partovi, "Study of influence of superimposed hydrostatic pressure on ductility in ring compression test" 29 : 6581-6590, 2020

      6 N. Jones, "Structural Impact" Cambridge University Press 2011

      7 P. Bajaj, "Steels in additive manufacturing: a review of their microstructure and properties" 772 : 138633-, 2020

      8 M. A. Sofuoğlu, "Springback behavior of AA6082T6 tubes in three-point bending operation" 182 : 658-664, 2017

      9 S. S. Hsu, "Quasi-static and dynamic axial crushing of thin-walled circular stainless steel, mild steel and aluminium alloy tubes" 9 (9): 195-217, 2004

      10 T. Wierzbicki, "On the crushing mechanics of thin-walled structures" 50 (50): 727-734, 1983

      11 A. Baroutaji, "On the crashworthiness performance of thin-walled energy absorbers: recent advances and future developments" 118 : 137-163, 2017

      12 M. Shahzamanian Sichani, "Numerical study of anisotropy and ductility enhancement in sheet metals" McMaster University 2020

      13 S. Gürgen, "Numerical simulation of roller hemming operation on convex edge-convex surface parts" Trans Tech Publications Ltd 15 : 75-84, 2016

      14 S. Gürgen, "Numerical modeling of roller hemming operation on a straight edge part" 41 (41): 512-, 2019

      15 M. Shakeri, "New insights into the collapsing of cylindrical thin-walled tubes under axial impact load" 221 (221): 869-885, 2007

      16 J. Marzbanrad, "Multi-objective optimization of aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm and neural networks" 49 (49): 1605-1615, 2011

      17 E. Acar, "Multi-objective crashworthiness optimization of tapered thinwalled tubes with axisymmetric indentations" 49 (49): 94-105, 2011

      18 S. Reddy, "Multi-cornered thin-walled sheet metal members for enhanced crashworthiness and occupant protection" 94 : 56-66, 2015

      19 A. G. Olabi, "Metallic tube type energy absorbers: a synopsis" 45 (45): 706-726, 2007

      20 W. Johnson, "Metallic energy dissipating systems" 31 : 277-287, 1978

      21 G. E. Dieter, "Mechanical Metallurgy" McGraw-Hill Book Company, Inc 1986

      22 W. F. Hosford, "Mechanical Behavior of Materials" Cambridge University Press 2010

      23 M. Murugesan, "Johnson Cook material and failure model parameters estimation of AISI-1045 medium carbon steel for metal forming applications" 12 (12): 609-, 2019

      24 S. Montazeri, "Investigating the energy absorption, SEA and crushing performance of holed and grooved thin-walled tubes under axial loading with different materials" 131 : 646-653, 2018

      25 G. Nagel, "Impact and energy absorption of straight and tapered rectangular tubes" Queensland University of Technology 2005

      26 W. D. Callister, "Fundamentals of Materials Science and Engineering" Wiley 2000

      27 G. Weber, "Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solid" 79 (79): 173-202, 1990

      28 X. H. Hu, "Enhanced formability in sheet metals produced by cladding a high strainrate sensitive layer" 81 (81): 021007-, 2014

      29 X. X. Chen, "Enhanced ductility in sheet metals produced by cladding a ductile layer" 77 (77): 2010

      30 X. X. Chen, "Enhanced ductility in round tensile bars produced by cladding a ductile ring" 18 (18): 025005-, 2010

      31 M. M. Shahzamanian, "Enhanced bendability in sheet metal produced by cladding a ductile layer" 23 : 100952-, 2020

      32 C. Baykasoglu, "Energy absorption of circular aluminium tubes with functionally graded thickness under axial impact loading" 20 (20): 95-106, 2015

      33 P. Khalili, "Energy absorption capability of thin-walled aluminium tubes under crash loading" 9 : 1734-1743, 2015

      34 M. Mahbod, "Energy absorption analysis of a novel foam-filled corrugated composite tube under axial and ablique loading" 129 : 58-73, 2018

      35 C. P. Kohar, "Effects of elastic-plastic behaviour on the axial crush response of square tubes" 93 : 64-87, 2015

      36 Y. Shi, "Effect of rate sensitivity on necking behavior of a laminated tube under dynamic loading" 81 (81): 051010-, 2014

      37 Abdullah Sert, "Effect of heat treatment on the bending behavior of aluminum alloy tubes" 대한기계학회 31 (31): 5273-5278, 2017

      38 W. Abramowicz, "Dynamic axial crushing of square tubes" 2 (2): 179-208, 1984

      39 F. Tarlochan, "Design of thin wall structures for energy absorption applications: enhancement of crashworthiness due to axial and oblique impact forces" 71 : 7-17, 2013

      40 T. Wierzbicki, "Crushing analysis of metal honeycombs" 1 (1): 157-174, 1983

      41 Y. Zhang, "Crushing analysis for novel bio-inspired hierarchical circular structures subjected to axial load" 140 : 407-431, 2018

      42 A. A. A. Alghamdi, "Collapsible impact energy absorbers: an overview" 39 (39): 189-213, 2001

      43 S. E. Alkhatib, "Collapse behavior of thin-walled corrugated tapered tubes" 150 : 674-692, 2017

      44 K. R. F. Andrews, "Classification of the axial collapse of cylindrical tubes under quasi-static loadin" 25 (25): 687-696, 1983

      45 K. Wang, "Calibration of the Johnson-Cook failure parameters as the chip separation criterion in the modelling of the orthogonal metal cutting process" McMaster University 2016

      46 A. Eyvazian, "Axial crushing behavior and energy absorption efficiency of corrugated tubes" 54 : 1028-1038, 2014

      47 M. Yamashita, "Axial crush of hollow cylindrical structures with various polygonal cross-sections:numerical simulation and experiment" 140 (140): 59-64, 2003

      48 S. Salehghaffari, "Attempts to improve energy absorption characteristics of circular metal tubes subjected to axial loading" 48 (48): 379-390, 2010

      49 M. M. Shahzamanian, "Anisotropic Gurson‐Tvergaard‐Needleman plasticity and damage model for finite element analysis of elastic‐plastic problems" 115 (115): 1527-1551, 2018

      50 J. M. Alexander, "An approximate analysis of the collapse of thin cylindrical shells under axial loading" 13 (13): 10-15, 1960

      51 L. Shi, "An adaptive response surface method for crashworthiness optimization" 45 (45): 1365-1377, 2013

      52 L. Shi, "Adaptive samplingbased RBDO method for vehicle crashworthiness design using bayesian metric and stochastic sensitivity analysis with independent random variables" 18 (18): 331-342, 2013

      53 S. Gürgen, "A parametric investigation of roller hemming operation on a curved edge part" 19 : 11-19, 2019

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼