RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Catechol-modified poly(oxazoline)s with tunable degradability facilitate cell invasion and lateral cartilage integration

      한글로보기

      https://www.riss.kr/link?id=A106510380

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Tissue adhesives play an important role in clinical applications and may aid in the treatment of cartilagedefects for improved cartilage integration. However, many fail to satisfy the demand for adequateadhesive strength on wet tissue surfaces and to ...

      Tissue adhesives play an important role in clinical applications and may aid in the treatment of cartilagedefects for improved cartilage integration. However, many fail to satisfy the demand for adequateadhesive strength on wet tissue surfaces and to facilitate sufficient cell migration and extracellular matrix(ECM) deposition at the defect site. Utilizing poly(2-alkyl-2-oxazoline) (POx)-based polymers equippedwith mussel-inspired adhesion moieties and combining them with the natural wound sealantfibrinogen,we fabricated an adhesive biosynthethic hydrogel with tunable mechanical properties and improvedbonding strength. Degradation of the hydrogels could be adjusted by the ratio of amide to ester linkagesof the catecholic functional group at the POx side chain. In an in vitro disc/ring model for lateral cartilageintegration, a benefit in long-term integration was observed with enhanced degradation of the adhesivewithout the expense of bonding strength. Incorporation of degradable ester linkages in the polymerfacilitated cell invasion and strong deposition of cartilaginous ECM at the defect site. Overall, the resultssuggest that the presented injectable adhesive hydrogel, due to its easy tunability, holds great potentialfor cartilage defect treatment and other medical applications.

      더보기

      참고문헌 (Reference)

      1 D. Eyrich, 585 : 379-, 2006

      2 M.C. Lee, (370) : 286-, 2000

      3 G. B. Varma, 67 (67): 1925-, 2006

      4 W. D. Spotnitz, 2014 : 203943-, 2014

      5 B. P. Lee, 15 (15): 449-, 2004

      6 S. Stichler, 9 (9): 044108-, 2017

      7 M. B. Pabbruwe, 30 (30): 4277-, 2009

      8 C. E. Brubaker, 31 (31): 420-, 2010

      9 Tim R. Dargaville, "Unexpected Switching of the Photogelation Chemistry When Cross-Linking Poly(2-oxazoline) Copolymers" American Chemical Society (ACS) 49 (49): 4774-4783, 2016

      10 Natalie Artzi, "Tuning adhesion failure strength for tissue-specific applications" Elsevier BV 7 (7): 67-74, 2011

      1 D. Eyrich, 585 : 379-, 2006

      2 M.C. Lee, (370) : 286-, 2000

      3 G. B. Varma, 67 (67): 1925-, 2006

      4 W. D. Spotnitz, 2014 : 203943-, 2014

      5 B. P. Lee, 15 (15): 449-, 2004

      6 S. Stichler, 9 (9): 044108-, 2017

      7 M. B. Pabbruwe, 30 (30): 4277-, 2009

      8 C. E. Brubaker, 31 (31): 420-, 2010

      9 Tim R. Dargaville, "Unexpected Switching of the Photogelation Chemistry When Cross-Linking Poly(2-oxazoline) Copolymers" American Chemical Society (ACS) 49 (49): 4774-4783, 2016

      10 Natalie Artzi, "Tuning adhesion failure strength for tissue-specific applications" Elsevier BV 7 (7): 67-74, 2011

      11 Jisoo Shin, "Tissue Adhesive Catechol-Modified Hyaluronic Acid Hydrogel for Effective, Minimally Invasive Cell Therapy" Wiley 25 (25): 3814-3824, 2015

      12 Anja Gress, "Thio-Click Modification of Poly[2-(3-butenyl)-2-oxazoline]" American Chemical Society (ACS) 40 (40): 7928-7933, 2007

      13 Bart Verbraeken, "The chemistry of poly(2-oxazoline)s" Elsevier BV 88 : 451-469, 2017

      14 Lígia Pereira Bré, "Taking tissue adhesives to the future: from traditional synthetic to new biomimetic approaches" Royal Society of Chemistry (RSC) 1 (1): 239-253, 2013

      15 Thomas Böck, "TGF-β1-Modified Hyaluronic Acid/Poly(glycidol) Hydrogels for Chondrogenic Differentiation of Human Mesenchymal Stromal Cells" Wiley 18 (18): 1700390-, 2018

      16 Florian C. Gaertner, "Synthesis, biodistribution and excretion of radiolabeled poly(2-alkyl-2-oxazoline)s" Elsevier BV 119 (119): 291-300, 2007

      17 Anna Mero, "Synthesis and characterization of poly(2-ethyl 2-oxazoline)-conjugates with proteins and drugs: Suitable alternatives to PEG-conjugates?" Elsevier BV 125 (125): 87-95, 2008

      18 Bruce P. Lee, "Synthesis and Gelation of DOPA-Modified Poly(ethylene glycol) Hydrogels" American Chemical Society (ACS) 3 (3): 1038-1047, 2002

      19 Robert Luxenhofer, "Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles" Elsevier BV 153 (153): 73-82, 2011

      20 Carsten Englert, "Steroid hormones strongly support bovine articular cartilage integration in the absence of interleukin-1β" Wiley 54 (54): 3890-3897, 2006

      21 P. K. Bos, "Specific enzymatic treatment of bovine and human articular cartilage: Implications for integrative cartilage repair" Wiley 46 (46): 976-985, 2002

      22 Peter Goddard, "Soluble polymeric carriers for drug delivery. Part 2. Preparation and in vivo behaviour of N-acylethylenimine copolymers" Elsevier BV 10 (10): 5-16, 1989

      23 Glenn Westwood, "Simplified Polymer Mimics of Cross-Linking Adhesive Proteins" American Chemical Society (ACS) 40 (40): 3960-3964, 2007

      24 Kelly A. Burke, "Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins" American Chemical Society (ACS) 17 (17): 237-245, 2015

      25 Hanneke M. L. Lambermont-Thijs, "Selective partial hydrolysis of amphiphilic copoly(2-oxazoline)s as basis for temperature and pH responsive micelles" Royal Society of Chemistry (RSC) 2 (2): 313-322, 2011

      26 Hoyong Chung, "Rapidly Cross-Linkable DOPA Containing Terpolymer Adhesives and PEG-Based Cross-Linkers for Biomedical Applications" American Chemical Society (ACS) 45 (45): 9666-9673, 2012

      27 Alexandra Berdichevski, "Protein composition alters in vivo resorption of PEG-based hydrogels as monitored by contrast-enhanced MRI" Elsevier BV 42 : 1-10, 2015

      28 Tacey X. Viegas, "Polyoxazoline: Chemistry, Properties, and Applications in Drug Delivery" American Chemical Society (ACS) 22 (22): 976-986, 2011

      29 Petra Šrámková, "Poly(2-oxazoline) hydrogels by photoinduced thiol-ene “click” reaction using different dithiol crosslinkers" Springer Science and Business Media LLC 24 (24): 82-, 2017

      30 Tim R. Dargaville, "Poly(2-oxazoline) Hydrogels: State-of-the-Art and Emerging Applications" Wiley 18 (18): 1800070-, 2018

      31 Brooke L. Farrugia, "Poly(2-oxazoline) Hydrogels for Controlled Fibroblast Attachment" American Chemical Society (ACS) 14 (14): 2724-2732, 2013

      32 Marius Bauer, "Poly(2-ethyl-2-oxazoline) as Alternative for the Stealth Polymer Poly(ethylene glycol): Comparison of in vitro Cytotoxicity and Hemocompatibility" Wiley 12 (12): 986-998, 2012

      33 Meghan K. Murphy, "Neocartilage integration in temporomandibular joint discs: physical and enzymatic methods" The Royal Society 12 (12): 20141075-, 2015

      34 Hong Zhang, "Mussel-inspired hyperbranched poly(amino ester) polymer as strong wet tissue adhesive" Elsevier BV 35 (35): 711-719, 2014

      35 Lin Li, "Mussel-inspired hydrogels for biomedical and environmental applications" Royal Society of Chemistry (RSC) 6 (6): 353-358, 2015

      36 Lu Han, "Mussel-Inspired Tissue-Adhesive Hydrogel Based on the Polydopamine–Chondroitin Sulfate Complex for Growth-Factor-Free Cartilage Regeneration" American Chemical Society (ACS) 10 (10): 28015-28026, 2018

      37 Bradley J. Sparks, "Mussel-Inspired Thiol–Ene Polymer Networks: Influencing Network Properties and Adhesion with Catechol Functionality" American Chemical Society (ACS) 24 (24): 3633-3642, 2012

      38 H. Lee, "Mussel-Inspired Surface Chemistry for Multifunctional Coatings" American Association for the Advancement of Science (AAAS) 318 (318): 426-430, 2007

      39 Bruce P. Lee, "Mussel-Inspired Adhesives and Coatings" Annual Reviews 41 (41): 99-132, 2011

      40 Courtney L. Jenkins, "Molecular Weight Effects upon the Adhesive Bonding of a Mussel Mimetic Polymer" American Chemical Society (ACS) 5 (5): 5091-5096, 2013

      41 Richard Hoogenboom, "Microwave-assisted synthesis and properties of a series of poly(2-alkyl-2-oxazoline)s" Informa UK Limited 8 (8): 659-671, 2012

      42 Ivan Martin, "Method for Quantitative Analysis of Glycosaminoglycan Distribution in Cultured Natural and Engineered Cartilage" Springer Science and Business Media LLC 27 (27): 656-662, 1999

      43 Devin G. Barrett, "Mechanically Robust, Negative-Swelling, Mussel-Inspired Tissue Adhesives" Wiley 2 (2): 745-755, 2013

      44 Christopher M. Madl, "Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling" Springer Science and Business Media LLC 16 (16): 1233-1242, 2017

      45 Daniela Eyrich, "Long-term stable fibrin gels for cartilage engineering" Elsevier BV 28 (28): 55-65, 2007

      46 Kolja Gelse, "Limited integrative repair capacity of native cartilage autografts within cartilage defects in a sheep model" Wiley 33 (33): 390-397, 2015

      47 B. Obradovic, "Integration of engineered cartilage" Wiley 19 (19): 1089-1097, 2001

      48 John S. Theodoropoulos, "Integration of Tissue-engineered Cartilage With Host Cartilage: An In Vitro Model" Ovid Technologies (Wolters Kluwer Health) 469 (469): 2785-2795, 2011

      49 Yuan Liu, "Injectable Dopamine-Modified Poly(ethylene glycol) Nanocomposite Hydrogel with Enhanced Adhesive Property and Bioactivity" American Chemical Society (ACS) 6 (6): 16982-16992, 2014

      50 Julia Blöhbaum, "Influence of charged groups on the cross-linking efficiency and release of guest molecules from thiol–ene cross-linked poly(2-oxazoline) hydrogels" Royal Society of Chemistry (RSC) 7 (7): 1782-1794, 2019

      51 Shengjie Huang, "In situ assembly of fibrinogen/hyaluronic acid hydrogel via knob-hole interaction for 3D cellular engineering" Elsevier BV 2 (2): 253-259, 2017

      52 Kara L. Spiller, "Hydrogels for the Repair of Articular Cartilage Defects" Mary Ann Liebert Inc 17 (17): 281-299, 2011

      53 Michael A. North, "High Strength Underwater Bonding with Polymer Mimics of Mussel Adhesive Proteins" American Chemical Society (ACS) 9 (9): 7866-7872, 2017

      54 Yuting Li, "Gelatin Microgel Incorporated Poly(ethylene glycol)-Based Bioadhesive with Enhanced Adhesive Property and Bioactivity" American Chemical Society (ACS) 8 (8): 11980-11989, 2016

      55 Zigang Ge, "Functional biomaterials for cartilage regeneration" Wiley 100 (100): 2526-, 2012

      56 Haeshin Lee, "Facile Conjugation of Biomolecules onto Surfaces via Mussel Adhesive Protein Inspired Coatings" Wiley 21 (21): 431-434, 2009

      57 Carrie E. Brubaker, "Enzymatically Degradable Mussel-Inspired Adhesive Hydrogel" American Chemical Society (ACS) 12 (12): 4326-4334, 2011

      58 Charles W. Archer, "Enhancing tissue integration in cartilage repair procedures" Wiley 209 (209): 481-493, 2006

      59 Morgan Cencer, "Effect of pH on the Rate of Curing and Bioadhesive Properties of Dopamine Functionalized Poly(ethylene glycol) Hydrogels" American Chemical Society (ACS) 15 (15): 2861-2869, 2014

      60 Vrushali Bhagat, "Degradable Adhesives for Surgery and Tissue Engineering" American Chemical Society (ACS) 18 (18): 3009-3039, 2017

      61 Margaret K. Boushell, "Current strategies for integrative cartilage repair" Informa UK Limited 58 (58): 393-406, 2016

      62 Zhongqiang Liu, "Convenient synthesis of acetonide-protected 3,4-dihydroxyphenylalanine (DOPA) for Fmoc solid-phase peptide synthesis" Elsevier BV 49 (49): 5519-5521, 2008

      63 Carsten Englert, "Bonding of articular cartilage using a combination of biochemical degradation and surface cross-linking" Springer Science and Business Media LLC 9 (9): R47-, 2007

      64 Francesca Scognamiglio, "Adhesive and sealant interfaces for general surgery applications" Wiley 104 (104): 626-639, 2016

      65 S. A. Maher, "A nanofibrous cell-seeded hydrogel promotes integration in a cartilage gap model" Wiley 4 (4): 25-, 2009

      66 Changjiang Fan, "A mussel-inspired double-crosslinked tissue adhesive intended for internal medical use" Elsevier BV 33 : 51-63, 2016

      67 M. Guthold, "A Comparison of the Mechanical and Structural Properties of Fibrin Fibers with Other Protein Fibers" Springer Science and Business Media LLC 49 (49): 165-181, 2007

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 3.4 0.75 2.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      2.39 2.24 0.397 0.56
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼