RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Structural characteristics of Cu/Ti bimetal composite produced by accumulative roll-bonding (ARB)

      한글로보기

      https://www.riss.kr/link?id=A107513381

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Cu/Ti nanostructured bimetal composite was produced by accumulative roll-bonding (ARB) technique and the structural characteristics of this composite were studied both experimentally and by finite element analysis. Macrostructure evolution of the comp...

      Cu/Ti nanostructured bimetal composite was produced by accumulative roll-bonding (ARB) technique and the structural characteristics of this composite were studied both experimentally and by finite element analysis. Macrostructure evolution of the composite layers was investigated by optical and scanning electron microscopes. In addition, transmission electron microscopy (TEM) as well as energy-dispersive X-ray spectroscopy (EDX) techniques were utilized for detailed microstructural investigations. Different finite element simulations were designed based on the experimental results. The results were combined with macrostructural observations to gain a better insight into the fragmentation mechanism of the Ti reinforcements. Necking of the Ti layers was observed after 3cycles of ARB processing which was found to happen at shear bands, after sufficient work-hardening of the constituents. Further processing resulted in fragmentation and distribution of lens shaped Ti constituents. It was found that such a shape evolution makes it more difficult to deform the Ti segments by further straining and consequently, a more localized strain concentration happens within the Cu matrix near these segments. A significant grain refinement was observed by TEM investigation of the highly strained composite. ARB processing of Cu/Ti bimetal composite resulted in nanostructured Ti reinforcements distributed within an ultrafine-grained Cu matrix.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼