RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Driving shaft fatigue optimization design of W type profile twin-screw pumps

      한글로보기

      https://www.riss.kr/link?id=A105941630

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Under changeable pumped medium and working environment, the twin-screw pump is prone to be broken by fatigue failures. A structure optimization design model and method of the driving shaft are presented based on response surface methodology and finite element analysis. In this model, the shaft diameter, chamfering degree and the shaft extension of the power end are selected as optimization variables, the limit values of the variables and maximal normal deformation of the spindle are considered as the constraint conditions, and the minimization of the equivalent alternating stress on the dangerous shaft section is taken as the optimization objective so as to improve the shaft fatigue reliability. The optimization results of a case show that the equivalent alternating stress on the dangerous spindle section reduces by 26.2 %, and the maximal normal deformation decreases by 25.2 % compared with the original design. In addition, the infinite life reliability and fatigue safety factors both meet the design requirements.
      번역하기

      Under changeable pumped medium and working environment, the twin-screw pump is prone to be broken by fatigue failures. A structure optimization design model and method of the driving shaft are presented based on response surface methodology and finite...

      Under changeable pumped medium and working environment, the twin-screw pump is prone to be broken by fatigue failures. A structure optimization design model and method of the driving shaft are presented based on response surface methodology and finite element analysis. In this model, the shaft diameter, chamfering degree and the shaft extension of the power end are selected as optimization variables, the limit values of the variables and maximal normal deformation of the spindle are considered as the constraint conditions, and the minimization of the equivalent alternating stress on the dangerous shaft section is taken as the optimization objective so as to improve the shaft fatigue reliability. The optimization results of a case show that the equivalent alternating stress on the dangerous spindle section reduces by 26.2 %, and the maximal normal deformation decreases by 25.2 % compared with the original design. In addition, the infinite life reliability and fatigue safety factors both meet the design requirements.

      더보기

      참고문헌 (Reference)

      1 G. J. Hu, "Thermal fatigue analysis of main shaft of nuclear pump" Dalian University of Technology 2012

      2 P. Gambhire, "Theoretical fatigue analysis of lubricating oil pump rotor shaft" 2 (2): 201-205, 2013

      3 Hong-Zhong Huang, "Support vector machine based estimation of remaining useful life: current research status and future trends" 대한기계학회 29 (29): 151-163, 2015

      4 R. A. Gujar, "Shaft design under fatigue loading by using modified goodman method" 3 (3): 1061-1066, 2013

      5 X. Y. Li, "Reliability analysis of phased mission system with non-exponential and partially repairable components" 175 : 119-127, 2018

      6 J. Mi, "Reliability analysis of complex multi-state system with common cause failure based on evidential networks" 174 : 71-81, 2018

      7 Z. R. Wu, "Prediction of multiaxial fatigue life for notched specimens of titanium alloy TC4" 대한기계학회 30 (30): 1997-2004, 2016

      8 N. Gates, "Multiaxial variable amplitude fatigue life analysis including notch effects" 91 (91): 337-351, 2016

      9 A. Niesłony, "Mean stress effect correction using constant stress ratio S-N curves" 52 (52): 49-56, 2013

      10 Y. F. Li, "Fatigue life analysis of trubine disks based on load spectra of aero-engines" 33 (33): 27-33, 2016

      1 G. J. Hu, "Thermal fatigue analysis of main shaft of nuclear pump" Dalian University of Technology 2012

      2 P. Gambhire, "Theoretical fatigue analysis of lubricating oil pump rotor shaft" 2 (2): 201-205, 2013

      3 Hong-Zhong Huang, "Support vector machine based estimation of remaining useful life: current research status and future trends" 대한기계학회 29 (29): 151-163, 2015

      4 R. A. Gujar, "Shaft design under fatigue loading by using modified goodman method" 3 (3): 1061-1066, 2013

      5 X. Y. Li, "Reliability analysis of phased mission system with non-exponential and partially repairable components" 175 : 119-127, 2018

      6 J. Mi, "Reliability analysis of complex multi-state system with common cause failure based on evidential networks" 174 : 71-81, 2018

      7 Z. R. Wu, "Prediction of multiaxial fatigue life for notched specimens of titanium alloy TC4" 대한기계학회 30 (30): 1997-2004, 2016

      8 N. Gates, "Multiaxial variable amplitude fatigue life analysis including notch effects" 91 (91): 337-351, 2016

      9 A. Niesłony, "Mean stress effect correction using constant stress ratio S-N curves" 52 (52): 49-56, 2013

      10 Y. F. Li, "Fatigue life analysis of trubine disks based on load spectra of aero-engines" 33 (33): 27-33, 2016

      11 J. Du, "Fatigue analysis on mainshaft in MW level wind turbine" 40 (40): 211-216, 2011

      12 C. J. Tang, "Fatigue analysis of transmission gear shaft based on Workbench" 1 (1): 1-4, 2014

      13 D. P. Li, "Fatigue analysis of the screw conveyor shaft based on S-N curve" 10 : 107-109, 2014

      14 Hong-Zhong Huang, "Fatigue Life Prediction of Fan Blade Using Nominal Stress Method and Cumulative Fatigue Damage Theory" Walter de Gruyter GmbH 0 (0): 2017

      15 S. Shawki, "Early failure of high pressure screw pumps: Shaft fracture" 13 (13): 595-600, 2013

      16 김경국, "Dynamic test and fatigue life evaluation of compressor blades" 대한기계학회 28 (28): 4049-4056, 2014

      17 Zhiqiang Lv, "Determining the Walker exponent and developing a modified Smith-Watson-Topper parameter model" 대한기계학회 30 (30): 1129-1137, 2016

      18 W. Peng, "Bivariate analysis of incomplete degradation observations based on inverse Gaussian processes and copulas" 65 (65): 624-639, 2016

      19 W. Peng, "Bayesian degradation analysis with inverse Gaussian process models under time-varying degradation rates" 66 (66): 84-96, 2017

      20 X. G. Wu, "Application of damage summation to fatigue analysis of crank shaft" 36 (36): 655-658, 2008

      21 S. J. Wu, "Analysis of fatigue for light vehicle gear box main shaft based on ANSYS" 35 (35): 32-33, 2008

      22 N. N. Sun, "Analysis of crankshaft fatigue based on Stain-Life theory" 35 (35): 60-64, 2014

      23 Huiying Gao, "An improved Corten-Dolan’s model based on damage and stress state effects" 대한기계학회 29 (29): 3215-3223, 2015

      24 A. Ince, "A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings" 62 (62): 34-41, 2014

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼