RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Dynamic Compliance and its Compensation Control of HIVC Force Control System

      한글로보기

      https://www.riss.kr/link?id=A105119425

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, the dynamic compliance and its compensation control of the force control system on the highly integrated valve-controlled cylinder (HIVC), the joint driver of the hydraulic drive legged robot, is researched. During the robot motion proc...

      In this paper, the dynamic compliance and its compensation control of the force control system on the highly integrated valve-controlled cylinder (HIVC), the joint driver of the hydraulic drive legged robot, is researched. During the robot motion process, the outer loop dynamic compliance control is applied on the base of hydraulic control inner loop and most inner loop control are the force or torque closed loop control. While the dynamic compliance control effectiveness of outer loop can be affected by the inner loop self-dynamic-compliance. Based on this problem, the dynamic compliance series composition theory of HIVC force control system as well as the analysis of its self-dynamiccompliance is proposed. And then the paper comes up with the compliance-enhanced control, which is a compound compensation control method of dynamic compliance with multiple series branches. Finally, the experiment results indicate that the control method mentioned above can enhance the dynamic compliance of HIVC force control system observably. This provides the compensation control method of inner loop dynamic compliance for the outer loop compliance control requiring the high accuracy and high robustness for the robot.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. Introduction
      • 2. Sampling system
      • 3. Dynamic Compliance of HIVC Force Control System
      • 4. Conclusion
      • Abstract
      • 1. Introduction
      • 2. Sampling system
      • 3. Dynamic Compliance of HIVC Force Control System
      • 4. Conclusion
      • References
      더보기

      참고문헌 (Reference)

      1 Xiangdong Kong, "Trajectory sensitivity analysis of first order and second order on position control system of highly integrated valve-controlled cylinder" 대한기계학회 29 (29): 4447-4466, 2015

      2 Claudio, S., "Towards versatile legged robots through active impedance control" 34 (34): 1003-1020, 2015

      3 Gao, J., "The modeling and controlling of electrohydraulic actuator for quadruped robot based on fuzzy Proportion Integration Differentiation controller" 228 (228): 2557-2568, 2014

      4 Nichol, J. G., "System design of a quadrupedal galloping machine" 23 (23): 1013-1027, 2004

      5 Polkovnikov, V. A., "Synthesis of the main parameters of servo actuators of hydraulic control surface drives of aircraft with a pump-controlled speed regulation" 41 (41): 617-627, 2002

      6 Lin F., "Self-tuning of PID controllers by adaptive interaction" 5 : 3676-3681, 2000

      7 Kong X. D., "Research on the force control compensation method with variable load stiffness and damping of the hydraulic drive unit force control system" 29 (29): 454-464, 2016

      8 K. X. Ba, "Parameters Sensitivity Analysis of Position-Based Impedance Control for Bionic Legged Robots' HDU" 7 : 1035-, 2017

      9 Irawan, A., "Optimal impedance control based on body inertia for a hydraulically driven hexapod robot walking on uneven and extremely soft terrain" 28 (28): 690-713, 2011

      10 Sariyildiz E., "On the explicit robust force control via disturbance observer" 62 (62): 1581-1589, 2015

      1 Xiangdong Kong, "Trajectory sensitivity analysis of first order and second order on position control system of highly integrated valve-controlled cylinder" 대한기계학회 29 (29): 4447-4466, 2015

      2 Claudio, S., "Towards versatile legged robots through active impedance control" 34 (34): 1003-1020, 2015

      3 Gao, J., "The modeling and controlling of electrohydraulic actuator for quadruped robot based on fuzzy Proportion Integration Differentiation controller" 228 (228): 2557-2568, 2014

      4 Nichol, J. G., "System design of a quadrupedal galloping machine" 23 (23): 1013-1027, 2004

      5 Polkovnikov, V. A., "Synthesis of the main parameters of servo actuators of hydraulic control surface drives of aircraft with a pump-controlled speed regulation" 41 (41): 617-627, 2002

      6 Lin F., "Self-tuning of PID controllers by adaptive interaction" 5 : 3676-3681, 2000

      7 Kong X. D., "Research on the force control compensation method with variable load stiffness and damping of the hydraulic drive unit force control system" 29 (29): 454-464, 2016

      8 K. X. Ba, "Parameters Sensitivity Analysis of Position-Based Impedance Control for Bionic Legged Robots' HDU" 7 : 1035-, 2017

      9 Irawan, A., "Optimal impedance control based on body inertia for a hydraulically driven hexapod robot walking on uneven and extremely soft terrain" 28 (28): 690-713, 2011

      10 Sariyildiz E., "On the explicit robust force control via disturbance observer" 62 (62): 1581-1589, 2015

      11 Jianyong Yao, "Nonlinear adaptive robust backstepping force control of hydraulic load simulator: Theory and experiments" 대한기계학회 28 (28): 1499-1507, 2014

      12 Poulakakis, I., "Modeling and experiments of untethered quadrupedal running with a bounding gait: the Scout II robot" 24 (24): 239-256, 2005

      13 Wang, Z. W., "Hydraulic quadruped robot joint force control based on double internal model controller" 9 (9): 241-250, 2016

      14 Claudio, S., "HyQ-Design and Development of a Hydraulically Actuated Quadruped Robot" University of Genoa 2010

      15 Sangpet, T, "Force control of an electrohydraulic actuator using a fractional-order controller" 15 (15): 764-772, 2013

      16 Takahiro E., "Force control and exponential stabilisation of one-link flexible arm" 87 (87): 1784-1807, 2014

      17 Xuewen Rong, "Design and simulation for a hydraulic actuated quadruped robot" 대한기계학회 26 (26): 1171-1177, 2012

      18 Hazrin N., "Closed-loop Force Control for Haptic Simulation Sensory Mode Interaction" 96-100, 2009

      19 Playter, R., "Bigdog" 2006

      20 Cao, Q. l., "Adaptive motion/ force control of constrained manipulators using a new fast terminal sliding mode" 49 (49): 150-156, 2014

      21 Kimura, H., "Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts" 26 (26): 475-490, 2007

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      학술지등록 한글명 : Journal of Electrical Engineering & Technology(JEET)
      외국어명 : Journal of Electrical Engineering & Technology
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 학술지 통합 (기타) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.45 0.21 0.39
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.37 0.34 0.372 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼