RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Synthesis of carbon nanotube fibers using the direct spinning process based on Design of Experiment (DOE)

      한글로보기

      https://www.riss.kr/link?id=A107659622

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>The optimum synthesis conditions for carbon nanotube (CNT) fibers were investigated using the Design of Experiment (DOE) technique. Direct spinning processes are governed by a variety of experimental factors: the methane flow rate, ferrocene ...

      <P>The optimum synthesis conditions for carbon nanotube (CNT) fibers were investigated using the Design of Experiment (DOE) technique. Direct spinning processes are governed by a variety of experimental factors: the methane flow rate, ferrocene flow rate, sulfur flow rate, hydrogen flow rate, water flow rate, and reaction temperature. The process was optimized in two stages that addressed first the Fractional Factorial Design (FFD) and then the Response Surface Methodology (RSM). Results from each experiment were classified according to a 6-step rating system: nothing(1), black gas(2), dust(3), ribbon or film(4), fiber(5), or continuous fiber(6). In the first step, three major factors (methane, sulfur, temperature) were identified as important among the six experimental factors tested using FFD. The effects of the major factors and the interactions were analyzed through the main effect plot and the interaction plot. In the second step, the experimental conditions were optimized using a model equation derived from Box-Behnken design experiments. Finally, the CNT fibers were continuously synthesized under the optimum conditions. The synthesized CNT fibers mainly consisted of single-walled CNTs (SWCNTs) 1.2 -3.8 nm in diameter. The I-G/I-D ratio of the CNT fibers was 48. This work provides a useful methodology for synthesizing the CNT fibers. (C) 2016 Elsevier Ltd. All rights reserved.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼