In this paper we shall study qualitative behavior of solutions of the difference equation xn+1 = a + dxn−lxn−k b − cxn−s, n = 0, 1, · · · where a, b, c, d are positive constants. In what follows we shall assume that the initial conditions...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A104869149
R. P. Agarwal (Florida Institute of Technology) ; E. M. Elsayed (Mansoura University)
2008
English
KCI등재후보,SCOPUS
학술저널
181-201(21쪽)
3
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
In this paper we shall study qualitative behavior of solutions of the difference equation xn+1 = a + dxn−lxn−k b − cxn−s, n = 0, 1, · · · where a, b, c, d are positive constants. In what follows we shall assume that the initial conditions...
In this paper we shall study qualitative behavior of solutions of the
difference equation
xn+1 = a + dxn−lxn−k b − cxn−s, n = 0, 1, · · ·
where a, b, c, d are positive constants. In what follows we shall assume
that the initial conditions x−r, x−r+1, x−r+2, · · · , x0 are given arbitrary
positive real numbers, and xi 6= b/c for i = −r, −r + 1, · · · , 0,
where r = max{l, k, s} is a nonnegative integer. We shall also study
three special cases of this equation.
참고문헌 (Reference)
1 E.A. Grove, "Periodicities in Nonlinear Difference Equations" Chapman & Hall / CRC Press 2005
2 S. Stevic, "Periodic character of a class of difference equation" 10 (10): 615-619, 2004
3 D. Simsek, "On the recursive sequence xn+1 = xn−3 /1 + xn−1" 1 (1): 475-480, 2006
4 S. Stevic, "On the recursive sequence xn+1 = xn−1/g(xn)" 6 (6): 405-414, 2002
5 X. Yang, "On the recursive sequence xn+1 = axn−1 + bxn−2 c + dxn−1xn−2" 162 : 1485-1497, 2005
6 S. Stevic, "On the recursive sequence xn+1 = (α − βxn)/(1 + g(xn)" 33 (33): 1767-1774, 2002
7 C. Cinar, "On the positive solutions of the difference equation xn+1 = xn−1/1 + xnxn−1" 150 : 21-24, 2004
8 C. Cinar, "On the positive solutions of the difference equation xn+1 = axn−1/1 + bxnxn−1" 156 : 587-590, 2004
9 E.M. Elabbasy, "On the difference equations xn+1 = αxn−k β + γ Qk i=0 xn−i" 5 (5): 101-113, 2007
10 H. El-Metwally, "On the difference equation yn+1 =yn−(2k+1) + pyn−(2k+1) + qyn−2l" 433-453, 2004
1 E.A. Grove, "Periodicities in Nonlinear Difference Equations" Chapman & Hall / CRC Press 2005
2 S. Stevic, "Periodic character of a class of difference equation" 10 (10): 615-619, 2004
3 D. Simsek, "On the recursive sequence xn+1 = xn−3 /1 + xn−1" 1 (1): 475-480, 2006
4 S. Stevic, "On the recursive sequence xn+1 = xn−1/g(xn)" 6 (6): 405-414, 2002
5 X. Yang, "On the recursive sequence xn+1 = axn−1 + bxn−2 c + dxn−1xn−2" 162 : 1485-1497, 2005
6 S. Stevic, "On the recursive sequence xn+1 = (α − βxn)/(1 + g(xn)" 33 (33): 1767-1774, 2002
7 C. Cinar, "On the positive solutions of the difference equation xn+1 = xn−1/1 + xnxn−1" 150 : 21-24, 2004
8 C. Cinar, "On the positive solutions of the difference equation xn+1 = axn−1/1 + bxnxn−1" 156 : 587-590, 2004
9 E.M. Elabbasy, "On the difference equations xn+1 = αxn−k β + γ Qk i=0 xn−i" 5 (5): 101-113, 2007
10 H. El-Metwally, "On the difference equation yn+1 =yn−(2k+1) + pyn−(2k+1) + qyn−2l" 433-453, 2004
11 C. Cinar, "On the difference equation xn+1 =xn−1/−1 + xnxn−1" 158 : 813-816, 2004
12 E.M. Elabbasy, "On the difference equation xn+1 =axn −bxn cxn − dxn−1" 2006 : 1-10, 2006
13 H. El-Metwally, "On the Global Attractivity and the Periodic Character of some Difference Equations" 7 : 1-14, 2001
14 S. Stevic, "Global stability and asymptotics of some classes of rational difference equations" 316 (316): 60-68, 2006
15 X. Yan, "Global attractivity in the recursive sequence xn+1 =α − βxn γ − xn−1" 138 (138): 415-423, 2003
16 E.M. Elabbasy, "Global attractivity and periodic character of a fractional difference equation of order three" 53 : 89-100, 2007
17 V.L. Kocic, "Global Behavior of Nonlinear Difference Equations of Higher Order with Applications" Kluwer Academic Publishers 1993
18 M. Aloqeili, "Dynamics of a rational difference equation" 176 (176): 768-774, 2006
19 Y. Su, "Dynamics of a higher order nonlinear rational difference equation" 11 (11): 133-150, 2005
20 M.R.S. Kulenovic, "Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures" Chapman & Hall / CRC Press 2001
21 H. El-Metwally, "A global convergence result with applications to periodic solutions" 245 : 161-170, 2000
Induced topology by proximal relations
One relator quotients of the extended modular group
The classification construction and the non-isomorphism counting of symmetric Latin square
Conullity of lambda-conservative matrices
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2024 | 평가예정 | 해외DB학술지평가 신청대상 (해외등재 학술지 평가) | |
2021-01-01 | 평가 | 등재학술지 선정 (해외등재 학술지 평가) | ![]() |
2020-12-01 | 평가 | 등재 탈락 (해외등재 학술지 평가) | |
2013-10-01 | 평가 | 등재학술지 선정 (기타) | ![]() |
2011-01-01 | 평가 | 등재후보학술지 유지 (기타) | ![]() |
2008-04-08 | 학회명변경 | 한글명 : 장전수리과학회 -> 장전수학회(章田數學會) | ![]() |
2008-01-01 | 평가 | SCOPUS 등재 (신규평가) | ![]() |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.16 | 0.16 | 0.24 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.29 | 0.27 | 0.609 | 0.15 |