RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Nanocrystalline silicon embedded in an alloy matrix as an anode material for high energy density lithium-ion batteries

      한글로보기

      https://www.riss.kr/link?id=A107706960

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>The development of electrode materials with high capacity and good cycling stability is a challenging prerequisite for improving the energy density of lithium-ion batteries. In this work, we synthesize silicon nanoparticles embedded in the inactive Al<SUB>4</SUB>Cu<SUB>9</SUB>, AlFe and TiFeSi<SUB>2</SUB> matrix phases, as an anode material. The silicon alloy material exhibits good high rate performance and delivers a high initial discharge capacity of 1459.3 mAh g<SUP>−1</SUP> with capacity retention of 85.7% after 200 cycles at a current density of 300 mA g<SUP>−1</SUP>. The superior cycling performance of the silicon alloy compared to that of micro-sized pure silicon can be attributed to the unique structure of the alloy material. Here, the nano-sized silicon particles reduce the ionic diffusion path length and minimize volume expansion during lithiation, while the inactive matrix phases accommodate volume changes during repeated cycling and provide a continuous electronic conduction pathway to the silicon nanoparticles.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Si alloy comprising Si nanoparticles embedded in the inert matrix is synthesized. </LI> <LI> It delivers a high initial discharge capacity with good cycling stability. </LI> <LI> As compared to pure Si, the Si alloy material shows superior cycling performance. </LI> <LI> Si alloy can be a promising anode material for high performance lithium-ion battery. </LI> </UL> </P>
      번역하기

      <P><B>Abstract</B></P> <P>The development of electrode materials with high capacity and good cycling stability is a challenging prerequisite for improving the energy density of lithium-ion batteries. In this work, we syn...

      <P><B>Abstract</B></P> <P>The development of electrode materials with high capacity and good cycling stability is a challenging prerequisite for improving the energy density of lithium-ion batteries. In this work, we synthesize silicon nanoparticles embedded in the inactive Al<SUB>4</SUB>Cu<SUB>9</SUB>, AlFe and TiFeSi<SUB>2</SUB> matrix phases, as an anode material. The silicon alloy material exhibits good high rate performance and delivers a high initial discharge capacity of 1459.3 mAh g<SUP>−1</SUP> with capacity retention of 85.7% after 200 cycles at a current density of 300 mA g<SUP>−1</SUP>. The superior cycling performance of the silicon alloy compared to that of micro-sized pure silicon can be attributed to the unique structure of the alloy material. Here, the nano-sized silicon particles reduce the ionic diffusion path length and minimize volume expansion during lithiation, while the inactive matrix phases accommodate volume changes during repeated cycling and provide a continuous electronic conduction pathway to the silicon nanoparticles.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Si alloy comprising Si nanoparticles embedded in the inert matrix is synthesized. </LI> <LI> It delivers a high initial discharge capacity with good cycling stability. </LI> <LI> As compared to pure Si, the Si alloy material shows superior cycling performance. </LI> <LI> Si alloy can be a promising anode material for high performance lithium-ion battery. </LI> </UL> </P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼