RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      딥러닝 기반 초음파 홀로그램 생성 알고리즘 개발 = Development of deep learning-based holographic ultrasound generation algorithm

      한글로보기

      https://www.riss.kr/link?id=A107394662

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Recently, an ultrasound hologram and its applications have gained attention in the ultrasound research field. However, the determination technique of transmit signal phases, which generate a hologram, has not been significantly advanced from the previ...

      Recently, an ultrasound hologram and its applications have gained attention in the ultrasound research field. However, the determination technique of transmit signal phases, which generate a hologram, has not been significantly advanced from the previous algorithms which are time-consuming iterative methods. Thus, we applied the deep learning technique, which has been previously adopted to generate an optical hologram, to generate an ultrasound hologram. We further examined the Deep learning-based Holographic Ultrasound Generation algorithm (Deep-HUG). We implement the U-Net-based algorithm and examine its generalizability by training on a dataset, which consists of randomly distributed disks, and testing on the alphabets (A-Z). Furthermore, we compare the Deep-HUG with the previous algorithm in terms of computation time, accuracy, and uniformity. It was found that the accuracy and uniformity of the Deep-HUG are somewhat lower than those of the previous algorithm whereas the computation time is 190 times faster than that of the previous algorithm, demonstrating that Deep-HUG has potential as a useful technique to rapidly generate an ultrasound hologram for various applications.

      더보기

      참고문헌 (Reference)

      1 Z. Zhou, "Unet++: A nested u-net architecture for medical image segmentation" 3-11, 2018

      2 O. Ronneberger, "U-net: Convolutional networks for biomedical image segmentation" 234-241, 2015

      3 Y. Hertzberg, "Towards multifocal ultrasonic neural stimulation:pattern generation algorithms" 7 : 056002-, 2010

      4 A. Franklina, "Three-dimensional ultrasonic trapping of microparticles in water with a simple and compact twoelement transducer" 111 : 094101-, 2017

      5 X. Tang, "Simultaneously shaping the intensity and phase of light for optical nanomanipulation"

      6 Y. Cai, "Rapid tilted-plane Gerchberg-Saxton algorithm for holographic optical tweezers" 28 : 12729-12739, 2020

      7 W. Yao, "Pixel-wise regression using U-Net and its application on pansharpening" 312 : 364-371, 2018

      8 K. Melde, "Particle assembly and object propulsion using acoustic holograms" 144 : 1895-1895, 2018

      9 J. Zhang, "Multifocal point beam forming by a single ultrasonic transducer with 3D printed holograms" 113 : 243502-243502, 2018

      10 B. E. Treeby, "Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method" 131 : 4324-4336, 2012

      1 Z. Zhou, "Unet++: A nested u-net architecture for medical image segmentation" 3-11, 2018

      2 O. Ronneberger, "U-net: Convolutional networks for biomedical image segmentation" 234-241, 2015

      3 Y. Hertzberg, "Towards multifocal ultrasonic neural stimulation:pattern generation algorithms" 7 : 056002-, 2010

      4 A. Franklina, "Three-dimensional ultrasonic trapping of microparticles in water with a simple and compact twoelement transducer" 111 : 094101-, 2017

      5 X. Tang, "Simultaneously shaping the intensity and phase of light for optical nanomanipulation"

      6 Y. Cai, "Rapid tilted-plane Gerchberg-Saxton algorithm for holographic optical tweezers" 28 : 12729-12739, 2020

      7 W. Yao, "Pixel-wise regression using U-Net and its application on pansharpening" 312 : 364-371, 2018

      8 K. Melde, "Particle assembly and object propulsion using acoustic holograms" 144 : 1895-1895, 2018

      9 J. Zhang, "Multifocal point beam forming by a single ultrasonic transducer with 3D printed holograms" 113 : 243502-243502, 2018

      10 B. E. Treeby, "Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method" 131 : 4324-4336, 2012

      11 S. Jiménez-Gambín, "Holograms to focus arbitrary ultrasonic fields through the skull" 12 : 14016-14016, 2019

      12 K. Melde, "Holograms for acoustics" 537 : 518-522, 2016

      13 G. Situ, "Generalized iterative phase retrieval algorithms and their applications" 15505881-, 2015

      14 G. Whyte, "Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm" 7 : 117-, 2005

      15 X. Zeng, "Evaluation of the angular spectrum approach for simulations of nearfield pressures" 123 : 68-76, 2008

      16 L. Xiao, "DeepFocus: learned image synthesis for computational displays" 37 : 200-, 2018

      17 R. Horisaki, "Deep-learninggenerated holography" 57 : 3859-3863, 2018

      18 M. H. Eybposh, "Deep CGH: 3D computer-generated holography using deep learning" 28 : 26636-26650, 2020

      19 Y. Hertzberg, "Bypassing absorbing objects in focused ultrasound using computer generated holographic technique" 38 : 6407-6415, 2011

      20 Y. Nishizaki, "Analysis of non-iterative phase retrieval based on machine learning" 27 : 136-141, 2020

      21 Z. Ma, "Acoustic holographic cell patterning in a biocompatible hydrogel" 32 : e1904181-, 2020

      22 L. Cox, "Acoustic hologram enhanced phased arrays for ultrasonic particle manipulation" 12 : 064055-, 2019

      23 R. W. Gerchberg, "A practical algorithm for the determination of phase from image and diffraction plane pictures" 35 : 237-246, 1972

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.23 0.23 0.22
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.2 0.18 0.398 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼