RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Experiment and multiphase CFD simulation of gas-solid flow in a CFB reactor at various operating conditions: Assessing the performance of 2D and 3D simulations

      한글로보기

      https://www.riss.kr/link?id=A107144299

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Accurate prediction of gas-solid flow hydrodynamics is key for the design, optimization, and scale-up of a circulating fluidized bed (CFB) reactor. Computational fluid dynamics (CFD) simulation with two-dimensional (2D) domain has been routinely used,...

      Accurate prediction of gas-solid flow hydrodynamics is key for the design, optimization, and scale-up of a circulating fluidized bed (CFB) reactor. Computational fluid dynamics (CFD) simulation with two-dimensional (2D) domain has been routinely used, considering the computational costs involved in three-dimensional (3D) simulations.
      This work evaluated the prediction capability of 2D and 3D gas-solid flow simulation in the lab-scale CFB riser section.
      The difference between 2D and 3D CFD simulation predictions was assessed and discussed in detail, considering several flow variables (superficial gas velocity, solid circulation rate, and secondary air injection). The transient Eulerian- Eulerian multiphase model was used. CFD simulation results were validated through an in-house experiment. The comparison between the experimental data and both computational domains shows that the 3D simulation can accurately predict the axial solid holdup profile. The CFD simulation comparison considering several flow conditions clearly indicated the limitation of the 2D simulation to accurately predict key hydrodynamic features, such as high solid holdup near the riser exit and riser bottom dense region. The accuracy of 2D and 3D simulations was further assessed using root-mean-square error calculation. Results indicated that the 3D simulation predicts flow behavior with higher accuracy than the 2D simulation.

      더보기

      참고문헌 (Reference)

      1 F. Berruti, 73 : 569-, 1995

      2 L. E. Ersoy, 145 : 25-, 2004

      3 M. Koksal, 192 : 1151-, 2005

      4 Y. Kang, 177 : 31-, 2000

      5 M. T. Shah, 168 : 812-, 2011

      6 J. Wang, 215 : 115428-, 2020

      7 T. Li, 123 : 236-, 2015

      8 S. Cloete, 239 : 21-, 2013

      9 J. H. Cloete, 303 : 156-, 2016

      10 M. T. Shah, 269 : 247-, 2015

      1 F. Berruti, 73 : 569-, 1995

      2 L. E. Ersoy, 145 : 25-, 2004

      3 M. Koksal, 192 : 1151-, 2005

      4 Y. Kang, 177 : 31-, 2000

      5 M. T. Shah, 168 : 812-, 2011

      6 J. Wang, 215 : 115428-, 2020

      7 T. Li, 123 : 236-, 2015

      8 S. Cloete, 239 : 21-, 2013

      9 J. H. Cloete, 303 : 156-, 2016

      10 M. T. Shah, 269 : 247-, 2015

      11 S. Shah, 218 : 131-, 2012

      12 E. Peirano, 56 : 4787-, 2001

      13 L. Cammarata, 1 : A48-, 2003

      14 N. Reuge, 63 : 5540-, 2008

      15 T. W. Asegehegn, 219 : 9-, 2012

      16 N. Xie, 182 : 1-, 2008

      17 N. Xie, 182 : 14-, 2008

      18 A. Bakshi, 332 : 114-, 2018

      19 J. Cardoso, 131 : 713-, 2019

      20 J. Chang, 351 : 159-, 2019

      21 T. Li, 254 : 115-, 2014

      22 Y. J. Cho, 27 : 158-, 1994

      23 P. R. Naren, 9 : 121-, 2011

      24 M. Koksal, 82 : 979-, 2004

      25 W. Namkung, 113 : 23-, 2000

      26 K. Smolders, 119 : 269-, 2001

      27 A. T. Harris, 49 : 52-, 2003

      28 J. D. Wilde, 58 : 877-, 2003

      29 S. K. Gupta, 108 : 21-, 2000

      30 H. Takeuchi, 47 : 195-, 1986

      31 T. B. Anderson, 6 : 527-, 1967

      32 M. Upadhyay, 272 : 260-, 2015

      33 S. Benyahia, 156 : 62-, 2005

      34 B. Jin, 24 : 3159-, 2010

      35 Y. Zhang, 280 : 227-, 2015

      36 P. C. Johnson, 176 : 67-, 1987

      37 M. Upadhyay, 37 : 695-, 2015

      38 A. T. Andrews IV, 44 : 6022-, 2005

      39 T.M. Knowlton, "Circulating fluidized beds" Blackie Academic & Professional 1997

      40 J. Li, "Circulating fluidized bed technology II" Pergamon Press 1988

      41 U. Arena, "Circulating fluidized bed technology" Pergamon Press 1986

      42 E.U. Hartge, "Circulating fluidized bed technology" Pergamon Press 1986

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2016-06-21 학술지명변경 한글명 : The Korean Journal of Chemical Engineering -> Korean Journal of Chemical Engineering
      외국어명 : The Korean Journal of Chemical Engineering -> Korean Journal of Chemical Engineering
      KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-09-27 학회명변경 영문명 : The Korean Institute Of Chemical Engineers -> The Korean Institute of Chemical Engineers KCI등재
      2007-09-03 학술지명변경 한글명 : The Korean Journal of Chemical Engineeri -> The Korean Journal of Chemical Engineering
      외국어명 : The Korean Journal of Chemical Engineeri -> The Korean Journal of Chemical Engineering
      KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.92 0.72 1.4
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.15 0.94 0.403 0.14
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼