RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Prospects and challenges of epigenomics in crop improvement

      한글로보기

      https://www.riss.kr/link?id=A108069539

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Background: The advent of high-throughput epigenome mapping techniques has ushered in a new era of multiomics with powerful tools now available to map and record genomic output at different levels. Integrating the different components of the epigenome...

      Background: The advent of high-throughput epigenome mapping techniques has ushered in a new era of multiomics with powerful tools now available to map and record genomic output at different levels. Integrating the different components of the epigenome from these multiomics measures allows investigations of cis-regulatory elements on a genome-scale. Mapping of chromatin state, chromatin accessibility dynamics, and higher-order chromatin structure enables a new level of understanding of cell fate determination, identity and function in normal growth and development, disease resistance, and yield.
      Objective: In this paper, the recent advances in epigenomics research of rice, maize, and wheat are reviewed, and the development trends of epigenomics of major crops in the coming years are projected.
      Methods: We highlight the role of epigenomics in regulating growth and development and identifying potential distal cis-regulatory elements in three major crops, and discuss the prospects and challenges for new epigenetics-mediated breeding technologies in crop improvement.
      Conclusion: In this review, we summarize and analyze recent epigenomic advances in three major crops epigenomics and discuss possibilities and challenges for future research in the field.

      더보기

      참고문헌 (Reference)

      1 Zhang P, "eRice : a refined epigenomic platform for japonica and indica rice" 18 : 1642-1644, 2020

      2 Huang C, "ZmCCT9 enhances maize adaptation to higher latitudes" 115 : E334-E341, 2017

      3 Ricci WA, "Widespread long-range cis-regulatory elements in the maize genome" 5 : 1237-1249, 2019

      4 Concia L, "Wheat chromatin architecture is organized in genome territories and transcription factories" 21 : 104-, 2020

      5 Khush GS, "What it will take to feed 5. 0 billion rice consumers in 2030" 59 : 1-6, 2005

      6 Ramírez-González RH, "The transcriptional landscape of polyploid wheat" 361 : eaar6089-, 2018

      7 Lu Z, "The prevalence, evolution and chromatin signatures of plant regulatory elements" 5 : 1250-1259, 2019

      8 International Rice Genome Sequencing, P, "The map-based sequence of the rice genome" 436 : 793-800, 2005

      9 Van de Peer Y, "The evolutionary significance of polyploidy" 18 : 411-424, 2017

      10 HenikoffS, "The centromere paradox stable inheritance with rapidly evolving DNA" 293 : 1098-1102, 2001

      1 Zhang P, "eRice : a refined epigenomic platform for japonica and indica rice" 18 : 1642-1644, 2020

      2 Huang C, "ZmCCT9 enhances maize adaptation to higher latitudes" 115 : E334-E341, 2017

      3 Ricci WA, "Widespread long-range cis-regulatory elements in the maize genome" 5 : 1237-1249, 2019

      4 Concia L, "Wheat chromatin architecture is organized in genome territories and transcription factories" 21 : 104-, 2020

      5 Khush GS, "What it will take to feed 5. 0 billion rice consumers in 2030" 59 : 1-6, 2005

      6 Ramírez-González RH, "The transcriptional landscape of polyploid wheat" 361 : eaar6089-, 2018

      7 Lu Z, "The prevalence, evolution and chromatin signatures of plant regulatory elements" 5 : 1250-1259, 2019

      8 International Rice Genome Sequencing, P, "The map-based sequence of the rice genome" 436 : 793-800, 2005

      9 Van de Peer Y, "The evolutionary significance of polyploidy" 18 : 411-424, 2017

      10 HenikoffS, "The centromere paradox stable inheritance with rapidly evolving DNA" 293 : 1098-1102, 2001

      11 Li Z, "The bread wheat epigenomic map reveals distinct chromatin architectural and evolutionary features of functional genetic elements" 20 : 139-, 2019

      12 Xu W, "The R-loop is a common chromatin feature of the Arabidopsis genome" 3 : 704-714, 2017

      13 Schnable PS, "The B73 maize genome complexity, diversity, and dynamics" 326 : 1112-1116, 2009

      14 Ha M, "Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids" 106 : 17835-17840, 2009

      15 IWGSC, "Shifting the limits in wheat research and breeding using a fully annotated reference genome" 361 : eaar7191-, 2018

      16 Xie L, "RiceENCODE : a comprehensive epigenomic database as a rice encyclopedia of DNA elements" 14 : 1604-1606, 2021

      17 Han F, "Rapid and repeatable elimination of a parental genome-specific DNA repeat(pGc1R-1a)in newly synthesized wheat allopolyploids" 170 : 1239-1245, 2005

      18 Zheng L, "Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays" 66 : 3917-3930, 2015

      19 de Souza LP, "Plant single-cell metabolomics-challenges and perspectives" 21 : 8987-, 2020

      20 Ran X, "Plant regulomics : a data-driven interface for retrieving upstream regulators from plant multi-omics data" 101 : 237-248, 2020

      21 Bayer PE, "Plant pan-genomes are the new reference" 6 : 914-920, 2020

      22 Gu H, "PRIN : a predicted rice interactome network" 12 : 161-, 2011

      23 Liu Y, "PCSD : a plant chromatin state database" 46 : D1157-D1167, 2018

      24 Wang M, "Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation" 44 : 4067-4079, 2016

      25 van Dijk ADJ, "Machine learning in plant science and plant breeding" 24 : 101890-, 2021

      26 Li E, "Long-range interactions between proximal and distal regulatory regions in maize" 10 : 2633-, 2019

      27 Scott MF, "Limited haplotype diversity underlies polygenic trait architecture across 70 years of wheat breeding" 22 : 137-, 2021

      28 Zhao L, "Integrative analysis of reference epigenomes in 20 rice varieties" 11 : 2658-, 2020

      29 Davis-Richardson AG, "Integrating DNA methylation and hene expression data in the development of the soybean-bradyrhizobium N2-fixing symbiosis" 7 : 518-, 2016

      30 Studer A, "Identification of a functional transposon insertion in the maize domestication gene tb1" 43 : 1160-1163, 2011

      31 Thomas M, "Hybridization of RNA to double-stranded DNA_ formation of R-loops" 73 : 2294-2298, 1976

      32 Jia J, "Homology-mediated inter-chromosomal interactions in hexaploid wheat lead to specific subgenome territories following polyploidization and introgression" 22 : 26-, 2021

      33 Gaeta RT, "Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype" 19 : 3403-3417, 2007

      34 Jackson S, "Genomic and expression plasticity of polyploidy" 13 : 153-159, 2010

      35 Liu Y, "Genome-wide mapping reveals R-loops associated with centromeric repeats in maize" 31 : 1409-1418, 2021

      36 Zhang Y, "Evolutionary rewiring of the wheat transcriptional regulatory network by lineage-specific transposable elements" 2021

      37 Zhou Y, "Epigenomic reprogramming in cardiovascular disease" 9 : 149-163, 2019

      38 Baum BR, "Elimination of 5S DNA unit classes in newly formed allopolyploids of the genera Aegilops and Triticum" 53 : 430-438, 2010

      39 Liu W, "Ectopic targeting of CG DNA methylation in Arabidopsis with the bacterial SssI methyltransferase" 12 : 3130-, 2021

      40 Wilkins O, "EGRINs(environmental gene regulatory influence networks)in rice that function in the response to water deficit, high temperature, and agricultural environments" 28 : 2365-2384, 2016

      41 Yuan J, "Dynamic and reversible DNA methylation changes induced by genome separation and merger of polyploid wheat" 18 : 171-, 2020

      42 Zhao Y, "Distinct nucleotide patterns among three subgenomes of bread wheat and their potential origins during domestication after allopolyploidization" 18 : 188-, 2020

      43 Song B, "Conserved noncoding sequences provide insights into regulatory sequence and loss of gene expression in maize" 31 : 1245-1257, 2021

      44 Salvi S, "Conserved noncoding genomic sequences associated with a floweringtime quantitative trait locus in maize" 104 : 11376-11381, 2007

      45 Pontes O, "Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome" 101 : 18240-18245, 2004

      46 Zhao L, "Chromatin loops associated with active genes and heterochromatin shape rice genome architecture for transcriptional regulation" 10 : 3640-, 2019

      47 Peng Y, "Chromatin interaction maps reveal genetic regulation for quantitative traits in maize" 10 : 2632-, 2019

      48 Fang Y, "Characterization of functional relationships of R-loops with gene transcription and epigenetic modifications in rice" 29 : 1287-1297, 2019

      49 Topp CN, "Centromere-encoded RNAs are integral components of the maize kinetochore" 101 : 15986-15991, 2004

      50 Ghoshal B, "CRISPRbased targeting of DNA methylation in Arabidopsis thaliana by a bacterial CG-specific DNA methyltransferase" 118 : e2125016118-, 2021

      51 Pulecio J, "CRISPR/Cas9-based engineering of the epigenome" 21 : 431-447, 2017

      52 Qi M, "CGT-seq : epigenome-guided de novo assembly of the core genome for divergent populations with large genome" 46 : e107-, 2018

      53 Guo X, "Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat" 26 : 4311-4327, 2014

      54 Fullwood MJ, "An oestrogen-receptoralpha-bound human chromatin interactome" 462 : 58-64, 2009

      55 Wang M, "An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses" 33 : 865-881, 2021

      56 Buenrostro JD, "ATAC-seq : a method for assaying chromatin accessibility genome-wide" 109 : 21.29.21-21.29.29, 2015

      57 Marand AP, "A cisregulatory atlas in maize at single-cell resolution" 184 : 3041-3055, 2021

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2012-05-07 학술지명변경 한글명 : 한국유전학회지 -> Genes & Genomics KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-04-14 학술지명변경 외국어명 : Korean Journal of Genetics -> Genes and Genomics KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.51 0.12 0.38
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.32 0.27 0.258 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼