RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Representing the Heat-to-Moisture Transport Efficiency in Stable Conditions: An Extension of Two Different Approaches

      한글로보기

      https://www.riss.kr/link?id=A107135662

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Using eddy-covariance turbulence measurements over a Tibetan glacier, we present a description of scalar turbulence characteristics in the stable boundary layer. Interesting behaviours are demonstrated in terms of temperature–humidity de-correlation...

      Using eddy-covariance turbulence measurements over a Tibetan glacier, we present a description of scalar turbulence characteristics in the stable boundary layer. Interesting behaviours are demonstrated in terms of temperature–humidity de-correlation and dissimilarity. That is, a lack of perfect correlation occurs between the two scalars (i.e., correlation coefficients <1 in magnitude); overall, sensible heat is more efficiently transported than water vapour over snow and ice surfaces. Such behaviours provide evidence of departures from the idealized expectation of Monin–Obukhov similarity theory—all scalars assume a perfect level of linear correlation and an equal efficiency level of vertical transport. Results presented herein are noteworthy in that observations over uniform glaciated surfaces involve negligible effects of either a canopy-induced roughness sublayer or heterogeneity in the temperature–humidity source/sink distributions. Moreover, we address two different approaches to representing the heat-to-moisture transport efficiency in stable conditions. A new approach is extended through application of the quadrant analysis technique, thereby representing it as a function of atmospheric stability. Caution is further advised in the use of this approach, when temperature–humidity turbulence becomes markedly de-correlated. A second approach, as previously applied for estimating forest evaporation fluxes in unstable conditions, is extended to a stable boundary layer over snow and ice surfaces.

      더보기

      참고문헌 (Reference)

      1 Gao, Z. Q., "Turbulent variance characteristics of temperature and humidity over a nonuniform land surface for an agricultural ecosystem in China" 23 : 365-374, 2006

      2 Wang, L., "Turbulent transport of momentum and scalars above an urban canopy" 150 : 485-511, 2014

      3 Asanuma, J., "Turbulence variance characteristics of temperature and humidity in the unstable atmospheric surface layer above a variable pine forest" 35 : 515-521, 1999

      4 Katul, G. G., "The temperature–humidity covariance in the marine surface layer: a one-dimensional analytical model" 126 : 263-278, 2008

      5 Parish, T. R., "The role of katabatic winds on the Antarctic surface wind regime" 131 : 317-333, 2003

      6 Moene, A. F., "The effect of surface heterogeneity on the temperature–humidity correlation and the relative transport efficiency" 129 : 99-113, 2008

      7 Lamaud, E., "Temperature–humidity dissimilarity and heat-towater- vapour transport efficiency above and within a pine forest canopy: the role of the Bowen ratio" 120 : 87-109, 2006

      8 van den Broeke, M., "Surface layer climate and turbulent exchange in the ablation zone of the West Greenland ice sheet" 29 : 2309-2323, 2009

      9 Giesen, R. H., "Surface energy balance in the ablation zone of Midtdalsbreen, a glacier in southern Norway: interannual variability and the effect of clouds" 113 : 2008

      10 Detto, M., "Simplified expressions for adjusting higher-order turbulent statistics obtained from open path gas analyzers" 122 : 205-216, 2007

      1 Gao, Z. Q., "Turbulent variance characteristics of temperature and humidity over a nonuniform land surface for an agricultural ecosystem in China" 23 : 365-374, 2006

      2 Wang, L., "Turbulent transport of momentum and scalars above an urban canopy" 150 : 485-511, 2014

      3 Asanuma, J., "Turbulence variance characteristics of temperature and humidity in the unstable atmospheric surface layer above a variable pine forest" 35 : 515-521, 1999

      4 Katul, G. G., "The temperature–humidity covariance in the marine surface layer: a one-dimensional analytical model" 126 : 263-278, 2008

      5 Parish, T. R., "The role of katabatic winds on the Antarctic surface wind regime" 131 : 317-333, 2003

      6 Moene, A. F., "The effect of surface heterogeneity on the temperature–humidity correlation and the relative transport efficiency" 129 : 99-113, 2008

      7 Lamaud, E., "Temperature–humidity dissimilarity and heat-towater- vapour transport efficiency above and within a pine forest canopy: the role of the Bowen ratio" 120 : 87-109, 2006

      8 van den Broeke, M., "Surface layer climate and turbulent exchange in the ablation zone of the West Greenland ice sheet" 29 : 2309-2323, 2009

      9 Giesen, R. H., "Surface energy balance in the ablation zone of Midtdalsbreen, a glacier in southern Norway: interannual variability and the effect of clouds" 113 : 2008

      10 Detto, M., "Simplified expressions for adjusting higher-order turbulent statistics obtained from open path gas analyzers" 122 : 205-216, 2007

      11 Dias, N. L., "Similarity of scalars under stable conditions" 80 : 355-373, 1996

      12 Katul, G., "Reply to the comment by Bink and Meesters" 84 : 503-509, 1997

      13 Roth, M., "Relative efficiencies of turbulent transfer of heat, mass, and momentum over a patchy urban surface" 52 : 1863-1874, 1995

      14 Munro, D.S., "Peyto glacier: one century of science" National Hydrology Research Institute 135-178, 2006

      15 Assouline, S., "On the variability of the Priestley- Taylor coefficient over water bodies" 52 : 150-163, 2016

      16 Larsén, X. G., "On the temperature and humidity dissimilarity in the marine surface layer" 151 : 273-291, 2014

      17 Cava, D., "On the anomalous behaviour of scalar flux-variance similarity functions within the canopy sub-layer of a dense alpine forest" 128 : 33-57, 2008

      18 Mahrt, L., "Nocturnal boundary layer regimes" 88 : 255-278, 1998

      19 van den Broeke, M. R., "Momentum, heat, and moisture budgets of the katabatic wind layer over a midlatitude glacier in summer" 36 : 763-774, 1997

      20 Foken, T., "Micrometeorology" Springer 2017

      21 Van Kesteren, B, "Measuring H2O and CO2 fluxes at field scales with scintillometry: part I – introduction and validation of four methods" 178–179 : 75-87, 2013

      22 Moriwaki, R., "Local and global similarity in turbulent transfer of heat, water vapour, and CO2 in the dynamic convective sublayer over a suburban area" 120 : 163-179, 2006

      23 Katul, G., "Latent and sensible heat flux predictions from a uniform pine forest using surface renewal and flux variance methods" 80 : 249-282, 1996

      24 Li, D., "Intrinsic constraints on asymmetric turbulent transport of scalars within the constant flux layer of the lower atmosphere" 45 : 2022-2030, 2018

      25 Konya, K., "Influence of weather conditions and spatial variability on glacier surface melt in Chilean Patagonia" 102 : 139-149, 2010

      26 Hill, R. J., "Implications of Monin-Obukhov similarity theory for scalar quantities" 46 : 2236-2244, 1989

      27 Oerlemans, J., "Glacio-meteorological investigations on Vatnajökull, Iceland, summer 1996 : an overview" 92 : 3-26, 1999

      28 Oerlemans, J., "Glacier winds and parameterisation of the related surface heat fluxes" 54 : 440-452, 2002

      29 Guo, X., "Fluxvariance method for latent heat and carbon dioxide fluxes in unstable conditions" 131 : 363-384, 2009

      30 Kohsiek, W., "Estimation of the sensible heat flux of a semi-arid area using surface radiative temperature measurements" 63 : 213-230, 1993

      31 Katul, G., "Estimation of surface heat and momentum fluxes using the fluxvariance method above uniform and non-uniform terrain" 74 : 237-260, 1995

      32 Gao, Z., "Enhanced temperature–humidity similarity caused by entrainment processes with increased wind shear" 123 : 4110-4121, 2018

      33 Oerlemans, J., "Energy balance of a glacier surface: analysis of automatic weather station data from the Morteratschgletscher. Switzerland" 34 : 477-485, 2002

      34 Ding, B., "Development of a Water and Enthalpy Budgetbased Glacier mass balance Model (WEB-GM) and its preliminary validation" 53 : 3146-3178, 2017

      35 Xu, B.-Q, "Deposition of anthropogenic aerosols in a southeastern Tibetan glacier" 114 (114): 2009

      36 Guo, X., "Critical evaluation of scalar roughness length parametrizations over a melting valley glacier" 139 : 307-332, 2011

      37 Giesen, R. H., "Comparison of the meteorology and surface energy balance at Storbreen and Midtdalsbreen, two glaciers in southern Norway" 3 : 57-74, 2009

      38 Bink, N. J., "Comment on ‘Estimation of surface heat and momentum fluxes using the flux-variance method above uniform and non-uniform terrain’ by Katul et al. (1995)" 84 : 497-502, 1997

      39 Li, D., "Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer" 140 : 243-262, 2011

      40 Oerlemans, J., "Clear and Cloudy Boundary Layers" Royal Netherlands Academy of Arts and Sciences 129-153, 1998

      41 Guo, X., "Characterizing urban turbulence under haze pollution: insights into temperature–humidity dissimilarity" 158 : 501-510, 2016

      42 Anderson, P. S., "Boundary layer physics over snow and ice" 8 : 3563-3582, 2008

      43 Padro, J., "An investigation of flux-variance methods and universal functions applied to three land-use types in unstable conditions" 66 : 413-425, 1993

      44 Katul, G. G., "A note on the flux-variance similarity relationships for heat and water vapour in the unstable atmospheric surface layer" 90 : 327-338, 1999

      45 Denby, B., "A comparison of surface renewal theory with the observed roughness length for temperature on a melting glacier surface" 103 : 459-468, 2002

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-11-03 학술지명변경 한글명 : 한국기상학회지 -> Asia-Pacific Journal of Atmospheric Sciences KCI등재
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-02-05 학술지명변경 외국어명 : 미등록 -> Asia-Pacific Journal of Atmospheric Sciences KCI등재
      2007-08-13 학술지명변경 한글명 : 한국기상학회지 -> Journal of the Korean Meteorological Society(한국기상학회지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.81 0.51 1.31
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.11 0.95 0.771 0.32
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼