RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      A FINITE ELEMENT METHOD USING SIF FOR CORNER SINGULARITIES WITH AN NEUMANN BOUNDARY CONDITION

      한글로보기

      https://www.riss.kr/link?id=A105113125

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      In [8] they introduced a new finite element method for ac- curate numerical solutions of Poisson equations with corner singularities, which is useful for the problem with known stress intensity factor. They consider the Poisson equations with homogeneous Dirichlet boundary con- dition, compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then they pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which con- verges with optimal speed. From the solution they could get accurate solution just by adding the singular part. This approach works for the case when we have the reasonably accurate stress intensity factor. In this paper we consider Poisson equations defined on a domain with a concave corner with Neumann boundary conditions. First we compute the stress intensity factor using the extraction formular, then find the regular part of the solution and the solution.
      번역하기

      In [8] they introduced a new finite element method for ac- curate numerical solutions of Poisson equations with corner singularities, which is useful for the problem with known stress intensity factor. They consider the Poisson equations with homogene...

      In [8] they introduced a new finite element method for ac- curate numerical solutions of Poisson equations with corner singularities, which is useful for the problem with known stress intensity factor. They consider the Poisson equations with homogeneous Dirichlet boundary con- dition, compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then they pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which con- verges with optimal speed. From the solution they could get accurate solution just by adding the singular part. This approach works for the case when we have the reasonably accurate stress intensity factor. In this paper we consider Poisson equations defined on a domain with a concave corner with Neumann boundary conditions. First we compute the stress intensity factor using the extraction formular, then find the regular part of the solution and the solution.

      더보기

      참고문헌 (Reference)

      1 김석찬, "Remarks on finite element methods for corner singularities using SIF" 호남수학회 38 (38): 661-674, 2016

      2 H. Blum, "On nite element methods for elliptic equations on domains with corners" 28 : 53-63, 1982

      3 F. Hecht, "New development in FreeFem++" 20 (20): 251-265, 2012

      4 S. C. Brenner, "Multigrid methods for the computation of singular solutions and stress intensity factor I: Corner singularities" 68 (68): 559-583, 1999

      5 P. Grisvard, "Elliptic Problems in Nonsmooth Domains" Pitman 1985

      6 Z. Cai, "A nite element method using singular functions for the poisson equation: Corner singularities" 39 : 286-299, 2001

      7 Z. Cai, "A nite element method using singular func-tions for Poisson equations: Mixed boundary conditions" 195 : 2635-2648, 2006

      8 S. Kim, "A nite element method for computing accurate solutions for Poisson equations with corner singularities using the stress intensity factor" 71 : 2330-2337, 2016

      1 김석찬, "Remarks on finite element methods for corner singularities using SIF" 호남수학회 38 (38): 661-674, 2016

      2 H. Blum, "On nite element methods for elliptic equations on domains with corners" 28 : 53-63, 1982

      3 F. Hecht, "New development in FreeFem++" 20 (20): 251-265, 2012

      4 S. C. Brenner, "Multigrid methods for the computation of singular solutions and stress intensity factor I: Corner singularities" 68 (68): 559-583, 1999

      5 P. Grisvard, "Elliptic Problems in Nonsmooth Domains" Pitman 1985

      6 Z. Cai, "A nite element method using singular functions for the poisson equation: Corner singularities" 39 : 286-299, 2001

      7 Z. Cai, "A nite element method using singular func-tions for Poisson equations: Mixed boundary conditions" 195 : 2635-2648, 2006

      8 S. Kim, "A nite element method for computing accurate solutions for Poisson equations with corner singularities using the stress intensity factor" 71 : 2330-2337, 2016

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2010-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2009-04-24 학회명변경 한글명 : 부산경남수학회 -> 영남수학회
      영문명 : The Busan Gyeongnam Mathematical Society -> Youngnam Mathematical Society
      KCI등재후보
      2008-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.14 0.14 0.15
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.13 0.12 0.304 0.09
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼