RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Estimation of Anchor Capacity in Net Protection System with Brake Frame for Debris Flow Based on Impact Energy

      한글로보기

      https://www.riss.kr/link?id=A108395254

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      New energy absorption devices have been developed for use in net-type debris flow protection systems. The capacity of the anchors in the system needs careful analysis because the anchors play a significant role in transmitting energy from the impactin...

      New energy absorption devices have been developed for use in net-type debris flow protection systems. The capacity of the anchors in the system needs careful analysis because the anchors play a significant role in transmitting energy from the impacting debris to the ground. In this paper, an effective method is proposed for estimating the anchor capacity based on increasing energy levels and the effect of brake frames in the system. For this purpose, four test cases based on varying impact energy levels were developed and full-scale impact tests were performed. The maximum deformations and tensile forces developed in the system were recorded and analyzed. Thereafter, the performance of the net protection system in the presence and absence of brake frames was numerically analyzed using ABAQUS software, and the stress distribution in various system components was investigated. Based on the results of the full-scale impact tests and numerical analysis, a relationship between the total anchor capacity and impact energy level was established by considering the workability of the U-clips. This study demonstrates that approximately 40% reduced anchor capacity can be safely used for impact energy levels ranging from 50 to 200 kJ when brake frames are used in the system.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼