RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Adaptable Center Detection of a Laser Line with a Normalization Approach using Hessian-matrix Eigenvalues

      한글로보기

      https://www.riss.kr/link?id=A104536614

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In vision measurement systems based on structured light, the key point of detection precision is to determine accurately the central position of the projected laser line in the image. The purpose of this research is to extract laser line centers based...

      In vision measurement systems based on structured light, the key point of detection precision is to determine accurately the central position of the projected laser line in the image. The purpose of this research is to extract laser line centers based on a decision function generated to distinguish the real centers from candidate points with a high recognition rate. First, preprocessing of an image adopting a difference image method is conducted to realize image segmentation of the laser line. Second, the feature points in an integral pixel level are selected as the initiating light line centers by the eigenvalues of the Hessian matrix. Third, according to the light intensity distribution of a laser line obeying a Gaussian distribution in transverse section and a constant distribution in longitudinal section, a normalized model of Hessian matrix eigenvalues for the candidate centers of the laser line is presented to balance reasonably the two eigenvalues that indicate the variation tendencies of the second-order partial derivatives of the Gaussian function and constant function, respectively. The proposed model integrates a Gaussian recognition function and a sinusoidal recognition function. The Gaussian recognition function estimates the characteristic that one eigenvalue approaches zero, and enhances the sensitivity of the decision function to that characteristic, which corresponds to the longitudinal direction of the laser line. The sinusoidal recognition function evaluates the feature that the other eigenvalue is negative with a large absolute value, making the decision function more sensitive to that feature, which is related to the transverse direction of the laser line. In the proposed model the decision function is weighted for higher values to the real centers synthetically, considering the properties in the longitudinal and transverse directions of the laser line. Moreover, this method provides a decision value from 0 to 1 for arbitrary candidate centers, which yields a normalized measure for different laser lines in different images. The normalized results of pixels close to 1 are determined to be the real centers by progressive scanning of the image columns. Finally, the zero point of a second-order Taylor expansion in the eigenvector’s direction is employed to refine further the extraction results of the central points at the subpixel level. The experimental results show that the method based on this normalization model accurately extracts the coordinates of laser line centers and obtains a higher recognition rate in two group experiments.

      더보기

      참고문헌 (Reference)

      1 L. W. Tsai, "Vehicle detection using normalized color and edge map" 16 : 850-864, 2007

      2 C. Steger, "Unbiased extraction of lines with parabolic and Gaussian profiles" 117 : 97-112, 2012

      3 G. S. Xu, "Sub-pixel edge detection based on curve fitting" 373-375, 2009

      4 L. Qi, "Statistical behavior analysis and precision optimization for the laser stripe center detector based on Steger’s algorithm" 21 : 13442-13449, 2013

      5 T. Tsujimura, "Shape recognition of laser beam trace for human-robot interface" 34 : 1928-1935, 2013

      6 P. Perona, "Scale-space and edge detection using anisotropic diffusion" 12 : 629-639, 1990

      7 M. A. Luengo-Oroz, "Robust iris segmentation on uncalibrated noisy images using mathematical morphology" 28 : 278-284, 2010

      8 A. M. Pinto, "Object recognition using laser range finder and machine learning techniques" 29 : 12-22, 2013

      9 S. Larsson, "Motion control and data capturing for laser scanning with an industrial robot" 54 : 453-460, 2006

      10 A. F. Frangi, "Model-based quantitation of 3-D magnetic resonance angiographic images" 18 : 946-956, 1999

      1 L. W. Tsai, "Vehicle detection using normalized color and edge map" 16 : 850-864, 2007

      2 C. Steger, "Unbiased extraction of lines with parabolic and Gaussian profiles" 117 : 97-112, 2012

      3 G. S. Xu, "Sub-pixel edge detection based on curve fitting" 373-375, 2009

      4 L. Qi, "Statistical behavior analysis and precision optimization for the laser stripe center detector based on Steger’s algorithm" 21 : 13442-13449, 2013

      5 T. Tsujimura, "Shape recognition of laser beam trace for human-robot interface" 34 : 1928-1935, 2013

      6 P. Perona, "Scale-space and edge detection using anisotropic diffusion" 12 : 629-639, 1990

      7 M. A. Luengo-Oroz, "Robust iris segmentation on uncalibrated noisy images using mathematical morphology" 28 : 278-284, 2010

      8 A. M. Pinto, "Object recognition using laser range finder and machine learning techniques" 29 : 12-22, 2013

      9 S. Larsson, "Motion control and data capturing for laser scanning with an industrial robot" 54 : 453-460, 2006

      10 A. F. Frangi, "Model-based quantitation of 3-D magnetic resonance angiographic images" 18 : 946-956, 1999

      11 D. Ziou, "Line detection using an optimal IIR filter" 24 : 465-478, 1991

      12 E. B. Brown, "In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy" 7 : 864-868, 2001

      13 W. J. Walecki, "Fast in-line surface topography metrology enabling stress calculation for solar cell manufacturing for throughput in excess of 2000 wafers per hour" 19 : 025302-, 2008

      14 N. D. Duffy, "Facial image reconstruction and manipulation from measurements obtained using a structured lighting technique" 7 : 239-243, 1988

      15 C. Steger, "Extracting curvilinear structures: A differential geometric approach" 630-641, 1996

      16 A. Goshtasby, "Edge detection by curve fitting" 13 : 169-177, 1995

      17 J. V. D. Weijer, "Edge and corner detection by photometric quasi-invariants" 27 : 625-630, 2005

      18 K. Liu, "Dual-frequency pattern scheme for high-speed 3-D shape measurement" 18 : 5229-5244, 2010

      19 S. Chaudhuri, "Detection of blood vessels in retinal images using two-dimensional matched filters" 8 : 263-269, 1989

      20 C. Lemaitre, "Detection and matching of curvilinear structures" 44 : 1514-1527, 2011

      21 조명진, "Depth Resolution Analysis of Axially Distributed Stereo Camera Systems under Fixed Constrained Resources" 한국광학회 17 (17): 500-505, 2013

      22 손태윤, "Contrast Enhancement of Laser Speckle Contrast Image in Deep Vasculature by Reduction of Tissue Scattering" 한국광학회 17 (17): 86-90, 2013

      23 주원돈, "Analysis of Specific Problems in Laser Scanning Optical System Design" 한국광학회 15 (15): 22-29, 2011

      24 C. Steger, "An unbiased detector of curvilinear structures" 20 : 113-125, 1998

      25 O. Laligant, "A nonlinear derivative scheme applied to edge detection" 32 : 242-257, 2010

      26 C. Alard, "A method for optimal image subtraction" 503 : 325-331, 1998

      27 J. P. Moss, "A laser scanning system for the measurement of facial surface morphology" 10 : 179-190, 1989

      28 J. Canny, "A computational approach to edge detection" 6 : 679-698, 1986

      29 M. R. Shortis, "A comparison of some techniques for the subpixel location of discrete target images" 2350 : 239-250, 1994

      30 C. Harris, "A combined corner and edge detector" Manchester University 147-151, 1988

      31 S. Goel, "A Motion correction technique for laser scanning of moving objects" 11 : 225-228, 2014

      32 조태영, "3D Measurement of TSVs Using Low Numerical Aperture White-Light Scanning Interferometry" 한국광학회 17 (17): 317-322, 2013

      33 송병섭, "2D/3D Convertible Integral Imaging Display Using Point Light Source Array Instrumented by Polarization Selective Scattering Film" 한국광학회 17 (17): 162-167, 2013

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2017-02-03 학술지명변경 한글명 : Journal of the Optical Society of Korea -> Current Optics and Photonics
      외국어명 : Journal of the Optical Society of Korea -> Current Optics and Photonics
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-02 학술지명변경 한글명 : Journal of Optical Society of Korea -> Journal of the Optical Society of Korea
      외국어명 : Journal of Optical Society of Korea -> Journal of the Optical Society of Korea
      KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.67 0.24 0.55
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.48 0.43 0.383 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼