RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Experimental study of the association between sandstone size effect and strain rate effect

      한글로보기

      https://www.riss.kr/link?id=A107268382

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The association between sandstone size effect and strain rate effect were investigated experimentally with a split Hopkinson pressure bar (SHPB) system. The sandstone samples with Φ50 mm and different lengths were loaded under the constant ratio of p...

      The association between sandstone size effect and strain rate effect were investigated experimentally with a split Hopkinson pressure bar (SHPB) system. The sandstone samples with Φ50 mm and different lengths were loaded under the constant ratio of punch velocity to sample length to study their size effects. Sandstone samples with constant length of 25 mm were taken as the reference to study their strain rate effects. Results indicate that, under the same velocity of the punch, strain rate of each sandstone sample is inversely proportional sample length; dynamic strength of sandstone increases with the strain rate and the length to diameter ratio (L/D), and presents a quadratic curvilinear relation with strain rate while presenting a cubic curvilinear relation with sample L/D; the reasonable L/D of Φ50 mm sandstone samples ranges from 0.5 to 0.8; that dissipated energy can present a fixed proportional relation with punch kinetic energy is unrelated to sample length.

      더보기

      참고문헌 (Reference)

      1 S. Liang, "The study on damage evolution and constitutive model of the granite under constant strain rate impact" China University of Mining and Technology 2016

      2 S. Li, "The effect of specimen length in 75 mm split Hopkinson pressure bar experiment" 39 (39): 93-97, 2010

      3 E. D. H. Davies, "The dynamic compression testing of solids by the method of the split Hopkinson pressure bar" 11 (11): 155-179, 1963

      4 Y. X. Zhou, "Suggested methods for determining the dynamic strength parameters and mode I. Fracture toughness of rock materials" 49 : 105-112, 2012

      5 S. Liang, "Study on the determination of specimen size in SHPB experiments of rock materials" 21 (21): 1-5, 2015

      6 L. Hong, "Study on size effect of rock dynamic strength and strain rate sensitivity" 27 (27): 526-533, 2008

      7 L. Wang, "Stress Wave Foundation" National Defense Industry Press 122-124, 2010

      8 F. Liu, "Strain-rate effect on the compressive strength of brittle materials and its implementation into material strength model" 130 : 113-123, 2019

      9 L. Hong, "Size effect on strength and energy dissipation in fracture of rock under impact loads" Central South University of Technology 2008

      10 M. M. Elfahal, "Size effect for normal strength concrete cylinders subjected to axial impact" 31 (31): 461-481, 2005

      1 S. Liang, "The study on damage evolution and constitutive model of the granite under constant strain rate impact" China University of Mining and Technology 2016

      2 S. Li, "The effect of specimen length in 75 mm split Hopkinson pressure bar experiment" 39 (39): 93-97, 2010

      3 E. D. H. Davies, "The dynamic compression testing of solids by the method of the split Hopkinson pressure bar" 11 (11): 155-179, 1963

      4 Y. X. Zhou, "Suggested methods for determining the dynamic strength parameters and mode I. Fracture toughness of rock materials" 49 : 105-112, 2012

      5 S. Liang, "Study on the determination of specimen size in SHPB experiments of rock materials" 21 (21): 1-5, 2015

      6 L. Hong, "Study on size effect of rock dynamic strength and strain rate sensitivity" 27 (27): 526-533, 2008

      7 L. Wang, "Stress Wave Foundation" National Defense Industry Press 122-124, 2010

      8 F. Liu, "Strain-rate effect on the compressive strength of brittle materials and its implementation into material strength model" 130 : 113-123, 2019

      9 L. Hong, "Size effect on strength and energy dissipation in fracture of rock under impact loads" Central South University of Technology 2008

      10 M. M. Elfahal, "Size effect for normal strength concrete cylinders subjected to axial impact" 31 (31): 461-481, 2005

      11 T. Krauthammer, "Size effect for high-strength concrete cylinders subjected to axial impact" 28 (28): 1001-1016, 2003

      12 C. Zou, "Size and geometry effects on the mechanical properties of carrara marble under dynamic loadings" 49 (49): 1695-1708, 2016

      13 X. Li, "Research on the dynamic properties and fracture characteristics of rocks subject to impact loading" 36 (36): 2393-2405, 2017

      14 F. Gong, "Reference method for determining sample size in SHPB tests of rock materials" 32 (32): 24-28, 2013

      15 D. Li, "On the effect of length to diameter ratio of rock specimens subjected to dynamic and static compression" 33 (33): 93-100, 2018

      16 Z. Zhou, "Obtaining constitutive relationship for rate-dependent rock in SHPB tests" 43 (43): 697-706, 2010

      17 C. E. Frantz, "New experimental techniques with the split Hopkinson pressure bar" 17-21, 1984

      18 S. Ellwood, "Materials testing at high constant strain rates" 15 (15): 280-282, 1982

      19 R. Yang, "Experimental study on the dynamic properties of three types of rock at negative temperature" 37 : 455-464, 2018

      20 C. Zhai, "Experimental study of strain rate effects on normal weight concrete after exposure to elevated temperature" 50 (50): 40-, 2017

      21 M. Li, "Experimental study of mechanical properties on strain rate effect of sandstones after high temperature" 35 (35): 3479-3488, 2014

      22 A. D. Barr, "Effects of strain rate and moisture content on the behavior of sand under one-dimensional compression" 56 (56): 1625-1639, 2016

      23 H. Ahmadian, "Effect of microstructure deficiency on quasi-static and dynamic compressive strength of crystalline rocks" 2018

      24 Y. Liu, "Effect of axial static stress on mechanical properties of post-peak cracked sandstone under impact loading" 43 (43): 1281-1288, 2018

      25 F. Gong, "Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar" 113 : 211-219, 2019

      26 X. Xie, "Dynamic properties of sandstones with different shapes" 48 (48): 2441-2448, 2017

      27 X. Li, "Dynamic characteristics of granite subjected to intermediate loading rate" 38 (38): 21-39, 2005

      28 C. E. Fairhurst, "Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression" 36 (36): 279-289, 1999

      29 J. M. Lifshitz, "Data processing in the split Hopkinson pressure bar tests" 15 : 723-733, 1994

      30 M. He, "Classification and research methods of rock burst experimental fragments" 28 (28): 1521-1529, 2009

      31 X. Liu, "Acoustic emission characteristics analysis of rock under impact loading of different strain rate" 35 (35): 1-8, 2018

      32 X. Li, "A study on the dynamic properties and energy absorption of rocks" Central South University of Technology 1986

      33 T. C. Togami, "A split Hopkinson bar technique to evaluate the performance of accelerometers" 63 (63): 353-, 1996

      34 W. Chen, "A split Hopkinson bar technique for low-impedance materials" 39 (39): 81-85, 1999

      35 V. Bindiganavile, "A comment on the paper “Size effect for high-strength concrete cylinders subjected to axial impact”" 30 (30): 873-875, 2004

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼