RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Design and analysis of compact hotbox for solid oxide fuel cell based 1kW-class power generation system

      한글로보기

      https://www.riss.kr/link?id=A107511846

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>For solid oxide fuel cell (SOFC) based stationary power generation systems, a compact and efficient design of the hotbox is crucial. The prime objective of this work is to examine a novel and co...

      <P><B>Abstract</B></P> <P>For solid oxide fuel cell (SOFC) based stationary power generation systems, a compact and efficient design of the hotbox is crucial. The prime objective of this work is to examine a novel and compact hotbox design that is appropriate for a full-scale 1kW class SOFC system. The endothermicity of the processes including steam generation, reforming, and cathode air preheating is maintained by the exothermicity of an integrated fuel processor and heat recovery by heat exchangers. To achieve higher conversion efficiency, we propose a design that incorporates a fuel processor embedded in the hotbox to combust the off-gases from the fuel cell stack. The thermal energy from the fuel processor is utilized in the steam generator, reformer, and heat exchangers to balance the heat requirements of the SOFC system. The numerical simulations are executed in two steps: in the first step, a comprehensive numerical model is implemented on a standalone reformer to determine the heat duty required for the reforming process. The developed numerical model is further validated with experiments performed on a standalone reformer at different conditions. The validated model is subsequently employed on the integrated hotbox components (reformer, afterburner) to determine the efficacy and performance of the system. In the second step, two different heat exchanger designs are numerically examined to determine their effectiveness in terms of waste heat recovery of the stack and the BOP components. The numerical results show that the integrated reformer gives the same gas composition and methane conversion as that of a standalone reformer but the integrated design is more compact and offers improved efficiency for the SOFC system.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Compact size, thermally integrated hotbox design is presented. </LI> <LI> Model validated on standalone reformer placed in electrical furnace. </LI> <LI> Anode off-gas provides essential thermal energy. </LI> <LI> Parameter studied are methane conversion, gas space velocity, and effectiveness factor. </LI> <LI> Different heat exchanger designs tested in terms of heat recovery. </LI> </UL> </P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼