RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCIE SCOPUS

      Absorption Mechanism of a Physical Complex of Monomeric Insulin and Deoxycholyl-<small>l</small>-lysyl-methylester in the Small Intestine

      한글로보기

      https://www.riss.kr/link?id=A107557331

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>Currently, oral administration of insulin still remains the best option to avoid the burden of repeated subcutaneous injections and to improve its pharmacokinetics. The objective of the present investigation was to demonstrate the absorption ...

      <P>Currently, oral administration of insulin still remains the best option to avoid the burden of repeated subcutaneous injections and to improve its pharmacokinetics. The objective of the present investigation was to demonstrate the absorption mechanism of insulin in the physical complexation of deoxycholyl-<SMALL>l</SMALL>-lysyl-methylester (DCK) for oral delivery. The oral insulin/DCK complex was prepared by making a physical complex of insulin aspart with DCK through ion-pair interaction in water. For the cellular uptake study, fluorescein-labeled insulin or DCK were prepared according to a standard protocol and applied to Caco-2 or MDCK cell lines. For the PK/PD studies, we performed intrajejunal administration of different formulation of insulin/DCK complex to diabetic rats. The resulting insulin and DCK complex demonstrated greatly enhanced lipophilicity as well as increased permeation across Caco-2 monolayers. The immunofluorescence study revealed the distribution of the complex in the cytoplasm of Caco-2 cells. Moreover, in the apical sodium bile acid transporter (ASBT) transfected MDCK, the insulin/DCK complex showed interaction with ASBT, and also demonstrated absorption through passive diffusion. We could not find that any evidence of endocytosis in relation to the uptake of insulin complex in vitro. In the rat intestine model, the highest absorption of insulin complex was observed in the jejunum at 1 h and then in the ileum at 2–4 h. In PK/PD study, the complex showed a similar PK profile to that of SC insulin. Overall, the study showed that the effect of DCK on enhancing the absorption of insulin resulted from transcellular processes as well as bile acid transporter activity.</P><P><B>Graphic Abstract</B>
      <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/mpohbp/2015/mpohbp.2015.12.issue-6/mp500626a/production/images/medium/mp-2014-00626a_0009.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/mp500626a'>ACS Electronic Supporting Info</A></P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼