RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      행렬 전치를 이용한 효율적인 NaiveBayes 알고리즘 = An Efficient Algorithm for NaiveBayes with Matrix Transposition

      한글로보기

      https://www.riss.kr/link?id=A101434675

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 논문은 NaiveBayes에서 정확도의 손실 없이 효율적으로 동작하는 NaiveBayes에 대한 새로운 알고리즘을 제안한다. 제안된 방법은 분류 벡터에 대한 행렬 전치를 사용하여 NaiveBayes의 확률 계산 량을 최소화하는 것이다. 제안된 방법을 문서 분류 프레임 인 AI::Categorizer 상에서 구현하였으며, 잘 알려진 로이터-21578 데이터를 사용하여 기존의 NaiveBayes 방법과 비교하였다. 성능 비교의 결과로부터 제안된 방법이 기존의 NaiveBayes 방법보다 실행 속도측면에서 약 2배 정도의 성능 개선 효과가 있음을 알 수 있었다. 수 있었다.
      번역하기

      본 논문은 NaiveBayes에서 정확도의 손실 없이 효율적으로 동작하는 NaiveBayes에 대한 새로운 알고리즘을 제안한다. 제안된 방법은 분류 벡터에 대한 행렬 전치를 사용하여 NaiveBayes의 확률 계산 ...

      본 논문은 NaiveBayes에서 정확도의 손실 없이 효율적으로 동작하는 NaiveBayes에 대한 새로운 알고리즘을 제안한다. 제안된 방법은 분류 벡터에 대한 행렬 전치를 사용하여 NaiveBayes의 확률 계산 량을 최소화하는 것이다. 제안된 방법을 문서 분류 프레임 인 AI::Categorizer 상에서 구현하였으며, 잘 알려진 로이터-21578 데이터를 사용하여 기존의 NaiveBayes 방법과 비교하였다. 성능 비교의 결과로부터 제안된 방법이 기존의 NaiveBayes 방법보다 실행 속도측면에서 약 2배 정도의 성능 개선 효과가 있음을 알 수 있었다. 수 있었다.

      더보기

      다국어 초록 (Multilingual Abstract)

      This paper proposes an efficient algorithm of NaiveBayes without loss of its accuracy. The proposed method uses the transposition of category vectors, and minimizes the computation of the probability of NaiveBayes. The proposed method was implemented on the existing framework of the text categorization, so called, AI::Categorizer and it was compared with the conventional NaiveBayes with the well-known data, Router-21578. The comparisons show that the proposed method outperforms NaiveBayes about two times with respect to the executing time.
      번역하기

      This paper proposes an efficient algorithm of NaiveBayes without loss of its accuracy. The proposed method uses the transposition of category vectors, and minimizes the computation of the probability of NaiveBayes. The proposed method was implemented ...

      This paper proposes an efficient algorithm of NaiveBayes without loss of its accuracy. The proposed method uses the transposition of category vectors, and minimizes the computation of the probability of NaiveBayes. The proposed method was implemented on the existing framework of the text categorization, so called, AI::Categorizer and it was compared with the conventional NaiveBayes with the well-known data, Router-21578. The comparisons show that the proposed method outperforms NaiveBayes about two times with respect to the executing time.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼