RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Flapping flight in the wake of a leading insect

      한글로보기

      https://www.riss.kr/link?id=A106259563

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This study explores the wake effects of an upstream leading insect on the flight performance of a following one. The potential-flow based aerodynamic model, which combines the unsteady panel and unsteady vortex-lattice methods, is used to compute aero...

      This study explores the wake effects of an upstream leading insect on the flight performance of a following one. The potential-flow based aerodynamic model, which combines the unsteady panel and unsteady vortex-lattice methods, is used to compute aerodynamic loads and simulate wake structures. The accuracy of the current aerodynamic model was confirmed in this study. The paper shows that the following insect does not cause any noticeable impact on the leading insect aerodynamics, while unfavorable effects due to the presence of the leading insect were found on the following counterpart. Nonetheless, by choosing a proper wing kinematic phase, the following insect may absorb the energy of the leading insect’s trailing wake, and therefore mitigate these negative effects. The variations of the required mechanical power of the following insect against the wing kinematic phase difference were shown to be related to the travel of the leading insect’s downstroke starting vortex.

      더보기

      참고문헌 (Reference)

      1 M. H. Dickinson, "Wing rotation and the aerodynamics basis of insect flight" 284 (284): 1954-1960, 1999

      2 A. T. Nguyen, "Wing flexibility effects on the flight performance of an insect-like flapping-wing micro-air vehicle" 79 : 468-481, 2018

      3 S. Kauertz, "Wake vortex encounter risk assessment for crosswind departures" 49 (49): 281-291, 2012

      4 K. Warfvinge, "The power-speed relationship is U-shaped in two free-flying hawkmoths(Manduca sexta)" 14 (14): 20170372-, 2017

      5 R. P. O’Hara, "The morphological characterization of the forewing of the Manduca sexta species for the application of biomimetic flapping wing micro air vehicles" 7 (7): 46011-, 2012

      6 A. P. Willmott, "The mechanics of flight in the hawkmoth Manduca sexta : II. Aerodynamic consequences of kinematic and morphological variation" 200 (200): 2723-2745, 1997

      7 A. P. Willmott, "The mechanics of flight in the hawkmoth Manduca sexta : I. Kinematics of hovering and forward flight" 200 (200): 2705-2722, 1997

      8 J. M. Birch, "The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight" 206 (206): 2257-2272, 2003

      9 J. E. Bluman, "The influence of wing flexibility on the stability of a biomimetic flapping wing micro air vehicle in hover" 2016

      10 W. J. Maybury, "The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings" 207 (207): 4707-4726, 2004

      1 M. H. Dickinson, "Wing rotation and the aerodynamics basis of insect flight" 284 (284): 1954-1960, 1999

      2 A. T. Nguyen, "Wing flexibility effects on the flight performance of an insect-like flapping-wing micro-air vehicle" 79 : 468-481, 2018

      3 S. Kauertz, "Wake vortex encounter risk assessment for crosswind departures" 49 (49): 281-291, 2012

      4 K. Warfvinge, "The power-speed relationship is U-shaped in two free-flying hawkmoths(Manduca sexta)" 14 (14): 20170372-, 2017

      5 R. P. O’Hara, "The morphological characterization of the forewing of the Manduca sexta species for the application of biomimetic flapping wing micro air vehicles" 7 (7): 46011-, 2012

      6 A. P. Willmott, "The mechanics of flight in the hawkmoth Manduca sexta : II. Aerodynamic consequences of kinematic and morphological variation" 200 (200): 2723-2745, 1997

      7 A. P. Willmott, "The mechanics of flight in the hawkmoth Manduca sexta : I. Kinematics of hovering and forward flight" 200 (200): 2705-2722, 1997

      8 J. M. Birch, "The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight" 206 (206): 2257-2272, 2003

      9 J. E. Bluman, "The influence of wing flexibility on the stability of a biomimetic flapping wing micro air vehicle in hover" 2016

      10 W. J. Maybury, "The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings" 207 (207): 4707-4726, 2004

      11 C. P. Ellington, "The aerodynamics of hovering insect flight : II. Morphological parameters" 305 : 17-40, 1984

      12 S. P. Sane, "The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight" 205 (205): 1087-1096, 2002

      13 A. P. Willmott, "The Mechanics of Hawkmoth Flight" Univ. of Cambridge 1995

      14 H. Liu, "Size effects on insect hovering aerodynamics : an integrated computational study" 4 (4): 15002-, 2009

      15 D. Bieniek, "Simulation methods for aircraft encounters with deformed wake vortices" 53 (53): 1581-1596, 2016

      16 S. Ravi, "Rolling with the flow : bumblebees flying in unsteady wakes" 216 : 4299-4309, 2013

      17 J. S. Han, "Role of trailing-edge vortices on the hawkmothlike flapping wing" 52 (52): 1256-1266, 2015

      18 W. Shyy, "Recent progress in flapping wing aerodynamics and aeroelasticity" 46 (46): 284-327, 2010

      19 E. C. Polhamus, "Predictions of vortex-lift characteristics by a leading-edge suction analogy" 8 (8): 193-199, 1971

      20 K. B. Lua, "On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings" 49 (49): 1263-1291, 2010

      21 H. Aono, "Near wake vortex dynamics of a hovering hawkmoth" 25 : 23-36, 2009

      22 B. A. Roccia, "Modified unsteady vortex-lattice method to study flapping wings in hover flight" 51 (51): 2628-2642, 2013

      23 A. T. Nguyen, "Modified unsteady vortex lattice method for aerodynamics of flapping wing models" 2015

      24 J. Katz, "Low-speed Aerodynamics from Wing Theory to Panel Methods" Cambridge University Press 2001

      25 M. Sun, "Lift and power requirements of hovering flight in Drosophila virilis" 205 (205): 2413-2427, 2002

      26 C. P. Ellington, "Leading-edge vortices in insect flight" 384 (384): 626-630, 1996

      27 J. T. Vance, "Kinematic strategies for mitigating gust perturbations in insects" 8 (8): 16004-, 2013

      28 J. K. Kim, "Hovering and forward flight of the hawkmoth Manduca sexta : Trim search and 6-DOF dynamic stability characterization" 10 (10): 56012-, 2015

      29 V. M. Ortega-Jimenez, "Hawkmoth flight stability in turbulent vortex streets" 216 : 4567-4579, 2013

      30 A. T. Nguyen, "Extended unsteady vortex-lattice method for insect flapping wings" 53 (53): 1709-1718, 2016

      31 Y. Ryu, "Experimental investigation of flexible hawkmoth-like wings on the wingwake interaction in hovering flight" 15 (15): 139-153, 2018

      32 K. Senda, "Effects of structural flexibility of wings in flapping flight of butterfly" 7 (7): 25002-, 2012

      33 D. J. Lee, "Effect of vortex core distortion on blade-vortex interaction" 29 (29): 1355-1362, 1991

      34 A. T. Nguyen, "Effect of body aerodynamics on the dynamic flight stability of the hawkmoth Manduca sexta" 12 (12): 16007-, 2016

      35 J.-H. Han, "Dynamic stability of flappingwing micro air vehicles with unsteady aerodynamic model" 2017

      36 김중관, "Control Effectiveness Analysis of the hawkmoth Manduca sexta: a Multibody Dynamics Approach" 한국항공우주학회 14 (14): 152-161, 2013

      37 J. K. Wang, "Computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight" 208 (208): 3785-3804, 2005

      38 H. Liu, "Biomechanics and biomimetics in insect-inspired flight systems" 371 (371): 20150390-, 2016

      39 F. Gandhi, "A critical evaluation of various approaches for the numerical detection of helicopter bladevortex interactions" 45 (45): 179-190, 2000

      40 M. Sun, "A computational study of the aerodynamic forces and power requirements of dragonfly(Aeschna juncea)hovering" 207 (207): 1887-1901, 2004

      41 H. Liu, "A computational fluid dynamic study of hawkmoth hovering" 201 (201): 461-477, 1998

      42 T. M. Casey, "A comparison of mechanical and energetic estimates of flight cost for hovering sphinx moths" 91 (91): 117-129, 1981

      43 M. Ramasamy, "A Reynolds numberbased blade tip vortex model" 52 (52): 214-223, 2007

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼