RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Highly accurate family of time integration method

      한글로보기

      https://www.riss.kr/link?id=A105910840

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this study, the acceleration vector in each time step is assumed to be a mth order time polynomial. By using the initial conditions, satisfying the equation of motion at both ends of the time step and minimizing the square of the residual vector, t...

      In this study, the acceleration vector in each time step is assumed to be a mth order time polynomial. By using the initial conditions, satisfying the equation of motion at both ends of the time step and minimizing the square of the residual vector, the m+3 unknown coefficients are determined. The order of accuracy for this approach is m+1, and it has a very low dispersion error. Moreover, the period error of the new technique is almost zero, and it is considerably smaller than the members of the Newmark method. The proposed scheme has an appropriate domain of stability, which is greater than that of the central difference and linear acceleration techniques. The numerical tests highlight the improved performance of the new algorithm over the fourth-order Runge-Kutta, central difference, linear and average acceleration methods.

      더보기

      참고문헌 (Reference)

      1 Fung, T.C., "Weighting parameters for unconditionally stable higher-order accurate time step integration algorithms. Part 2-second-order equations" 45 (45): 971-1006, 1999

      2 S. Y. Chang, "Unconditional stability for explicit pseudodynamic testing" 국제구조공학회 18 (18): 411-428, 2004

      3 Zhai, W.M., "Two simple fast integration methods for large-scale dynamic problems in engineering" 39 (39): 4199-4214, 1996

      4 Mansur, W.J., "Time-segmented frequencydomain analysis for non-linear multi-degree-of-freedom structural systems" 237 (237): 457-475, 2000

      5 Rezaiee-Pajand, M., "Time integration method based on discrete transfer function" 16 (16): 1550009-, 2016

      6 Levine, W.S., "The Control Handbook" CRC Press 1996

      7 Mohammadzadeh, S., "Structure-dependent improved Wilson-$\theta$ method with higher order of accuracy and controllable amplitude decay" 52 : 417-436, 2017

      8 Paz, M., "Structural Dynamics" 1985

      9 Chen, C., "Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm" 38 (38): 23-44, 2009

      10 Wang, M., "Precise integration methods based on the Chebyshev polynomial of the first kind" 7 (7): 207-216, 2008

      1 Fung, T.C., "Weighting parameters for unconditionally stable higher-order accurate time step integration algorithms. Part 2-second-order equations" 45 (45): 971-1006, 1999

      2 S. Y. Chang, "Unconditional stability for explicit pseudodynamic testing" 국제구조공학회 18 (18): 411-428, 2004

      3 Zhai, W.M., "Two simple fast integration methods for large-scale dynamic problems in engineering" 39 (39): 4199-4214, 1996

      4 Mansur, W.J., "Time-segmented frequencydomain analysis for non-linear multi-degree-of-freedom structural systems" 237 (237): 457-475, 2000

      5 Rezaiee-Pajand, M., "Time integration method based on discrete transfer function" 16 (16): 1550009-, 2016

      6 Levine, W.S., "The Control Handbook" CRC Press 1996

      7 Mohammadzadeh, S., "Structure-dependent improved Wilson-$\theta$ method with higher order of accuracy and controllable amplitude decay" 52 : 417-436, 2017

      8 Paz, M., "Structural Dynamics" 1985

      9 Chen, C., "Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm" 38 (38): 23-44, 2009

      10 Wang, M., "Precise integration methods based on the Chebyshev polynomial of the first kind" 7 (7): 207-216, 2008

      11 Park, K.C., "Practical aspects of numerical time integration" 7 (7): 343-353, 1977

      12 Shuenn-Yih Chang, "Performances of non-dissipative structure-dependent integration methods" 국제구조공학회 65 (65): 91-98, 2018

      13 Saka, M.P., "Optimum design of pin-jointed steel structures with practical applications" 116 (116): 2599-2620, 1990

      14 Wu, B., "Operatorsplitting method for real-time substructure testing" 35 (35): 293-314, 2006

      15 Wang, M.F., "On the precise integration methods based on Pade approximations" 87 (87): 380-390, 2009

      16 Bathe, K.J., "On a composite implicit time integration procedure for nonlinear dynamics" 83 (83): A2513-A2524, 2005

      17 Rezaiee-Pajand, M., "Numerical time integration for dynamic analysis using a new higher order predictor-corrector method" 25 (25): 541-568, 2008

      18 Fung, T.C., "Numerical dissipation in time-step integration algorithms for structural dynamic analysis" 5 (5): 167-180, 2003

      19 Chang, S.Y., "Numerical dissipation for explicit, unconditionally stable time integration methods" 7 (7): 159-178, 2014

      20 Verma, M., "Numerical assessment of step-by-step integration methods in the paradigm of real-time hybrid testing" 8 (8): 1325-1348, 2015

      21 Bursi, O.S., "Novel coupling Rosenbrock-based algorithms for real-time dynamic substructure testing" 37 (37): 339-360, 2008

      22 Tang, Y., "New unconditionally stable explicit integration algorithm for real-time hybrid testing" 143 (143): 04017029-, 2017

      23 Javad Alamatian, "New implicit higher order time integration for dynamic analysis" 국제구조공학회 48 (48): 711-736, 2013

      24 Rezaiee-Pajand, M., "More accurate and stable time integration scheme" 31 (31): 791-812, 2015

      25 Rezaiee-Pajand, M., "Modified differential transformation method for solving nonlinear dynamic problems" 47 : 76-95, 2017

      26 Nguyen, T.L., "Long-term stable time integration scheme for dynamic analysis of planar geometrically exact Timoshenko beams" 396 : 144-171, 2017

      27 Graham, A., "Kronecker Products and Matrix Calculus: With Applications" John Wiley and Sons, Inc 1982

      28 Hilber, H.M., "Improved numerical dissipation for time integration algorithms in structural dynamics" 5 (5): 283-292, 1977

      29 Chang, S.Y., "Improved explicit method for structural dynamics" 133 (133): 748-760, 2007

      30 Torkamani, M.A., "Higher-order stiffness matrices in nonlinear finite element analysis of plane truss structures" 33 (33): 3516-3526, 2011

      31 Bathe, K.J., "Finite Element Procedures, Klaus-Jurgen Bathe"

      32 Saeed Mohammadzadeh, "Extended implicit integration process by utilizing nonlinear dynamics in finite element" 국제구조공학회 64 (64): 495-504, 2017

      33 Hulbert, G.M., "Explicit time integration algorithms for structural dynamics with optimal numerical dissipation" 137 (137): 175-188, 1996

      34 Klarmann, S., "Enhanced studies on a composite time integration scheme in linear and non-linear dynamics" 55 (55): 455-468, 2015

      35 Chopra, A.K., "Dynamics of Structures: Theory and Applications to Earthquake Engineering" Prentice-Hall 2001

      36 Felippa, C.A., "Direct time integration methods in nonlinear structural dynamics" 17 : 277-313, 1979

      37 Chen, C., "Development of direct integration algorithms for structural dynamics using discrete control theory" 134 (134): 676-683, 2008

      38 Kolay, C., "Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation" 43 (43): 1361-1380, 2014

      39 Bathe, K.J., "Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme" 85 (85): 437-445, 2007

      40 Rezaiee-Pajand, M., "Computing the structural buckling limit load by using dynamic relaxation method" 81 : 245-260, 2016

      41 Chang, S.Y., "Comparisons of structure-dependent explicit methods for time integration" 15 (15): 1450055-, 2015

      42 Rio, G., "Comparative study of numerical explicit time integration algorithms" 36 (36): 252-265, 2005

      43 Chang, S.Y., "Applications of a family of unconditionally stable, dissipative, explicit methods to pseudodynamic tests" 41 (41): 19-36, 2017

      44 Ghassemieh, M., "Application of weight functions in nonlinear analysis of structural dynamics problems" 13 (13): 1650005-, 2016

      45 Chang, S.Y., "An unconditionally stable explicit method for structural dynamics" 9 (9): 349-370, 2005

      46 Pezeshk, S., "An explicit time-integration method for damped structural systems" 3 (3): 145-162, 1995

      47 Wen, W.B., "An explicit time integration method for structural dynamics using septuple Bspline functions" 97 (97): 629-657, 2014

      48 Chang, S.Y., "An explicit method with improved stability property" 77 (77): 1100-1120, 2009

      49 Liu, T., "An efficient time-integration method for nonlinear dynamic analysis of solids and structures" 56 : 798-804, 2013

      50 Mohammad Rezaiee-Pajand, "An Accurate Predictor-corrector Time Integration Method for Structural Dynamics" 한국강구조학회 17 (17): 1033-1047, 2017

      51 Turyn, L., "Advanced Engineering Mathematics" CRC Press 2013

      52 Razavi, S.H., "A weighted residual parabolic acceleration time integration method for problems in structural dynamics" 7 (7): 227-238, 2007

      53 Chang, S.Y., "A virtual parameter to improve stability properties for an integration method" 11 (11): 297-313, 2016

      54 Golley, B.W., "A time-stepping procedure for structural dynamics using gauss point collocation" 39 (39): 3985-3998, 1996

      55 Shishvan, S.S., "A time integration algorithm for linear transient analysis based on the reproducing kernel method" 198 (198): 3361-3377, 2009

      56 Subbaraj, K., "A survey of direct time-integration methods in computational structural dynamics-II. Implicit methods" 32 (32): 1387-1401, 1989

      57 Dokainish, M.A., "A survey of direct time-integration methods in computational structural dynamics-I. Explicit methods" 32 (32): 1371-1386, 1989

      58 Kuo, S.R., "A robust timeintegration algorithm for solving nonlinear dynamic problems with large rotations and displacements" 12 (12): 1250051-, 2012

      59 Zheng, M., "A novel unconditionally stable explicit integration method for finite element method" 1-13, 2017

      60 Rezaiee-Pajand, M., "A novel time integration formulation for nonlinear dynamic analysis" 69 : 625-635, 2017

      61 Wen, W.B., "A novel sub-step composite implicit time integration scheme for structural dynamics" 182 : 176-186, 2017

      62 Chung, J., "A new family of explicit time integration methods for linear and non-linear structural dynamics" 37 (37): 3961-3976, 1994

      63 Chang, S.Y., "A new family of explicit methods for linear structural dynamics" 88 (88): 755-772, 2010

      64 Rezaiee-Pajand, M., "A new explicit time integration scheme for nonlinear dynamic analysis" 16 (16): 1550054-, 2016

      65 Yin, S.H., "A new explicit time integration method for structural dynamics" 13 (13): 1250068-, 2013

      66 Hahn, G.D., "A modified Euler method for dynamic analyses" 32 (32): 943-955, 1991

      67 Rezaiee-Pajand, M., "A mixed and multi-step higher-order implicit time integration family" 224 (224): 2097-2108, 2010

      68 Kuo, S.R., "A fast and accurate step-by-step solution procedure for direct integration" 11 (11): 473-493, 2011

      69 Rezaiee-Pajand, M., "A family of second-order fully explicit time integration schemes" 2017

      70 Chang, S.Y., "A family of noniterative integration methods with desired numerical dissipation" 100 (100): 62-86, 2014

      71 Shuenn-Yih Chang, "A family of dissipative structure-dependent integration methods" 국제구조공학회 55 (55): 815-837, 2015

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2021-12-01 평가 등재후보 탈락 (해외등재 학술지 평가)
      2020-12-01 평가 등재후보로 하락 (해외등재 학술지 평가) KCI등재후보
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-04-09 학회명변경 한글명 : (사)국제구조공학회 -> 국제구조공학회 KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-06-16 학회명변경 영문명 : Ternational Association Of Structural Engineering And Mechanics -> International Association of Structural Engineering And Mechanics KCI등재
      2005-05-26 학술지명변경 한글명 : 국제구조계산역학지 -> Structural Engineering and Mechanics, An Int'l Journal KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.12 0.62 0.94
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.79 0.68 0.453 0.33
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼