RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Prediction model of the surface roughness of micro-milling single crystal copper

      한글로보기

      https://www.riss.kr/link?id=A106465112

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Presently, the demand for single crystal copper micro-components is increasing in various fields because single crystal copper has good electrical conductivity. Micro-milling technology is an effective processing technology for small single crystal co...

      Presently, the demand for single crystal copper micro-components is increasing in various fields because single crystal copper has good electrical conductivity. Micro-milling technology is an effective processing technology for small single crystal copper parts. Surface roughness is a key performance indicator for micro-milling single crystal copper. Establishing a surface roughness prediction model with high precision is useful to guarantee the processing quality by selecting the cutting parameters for micro-milling. Few studies have currently focused on micro-milling single crystal copper. In this study, the orthogonal experiments of micro-milling single crystal copper were conducted, and the influences of the spindle and feed speeds and axial depth of cut on the surface roughness of micro-milled single crystal copper with different orientations were analyzed by range analyses. The spindle rotation speed was the major affecting factor. The surface roughness of single crystal copper in different crystal orientations was predicted by using the SVM method. Experimental results showed that the average relative error of the surface roughness of <100>, <110>, and <111> crystal orientation single crystal copper was 2.7 %, 3.3 %, and 2.2 %, respectively, and that the maximum relative errors were 7.0 %. 10.1 %, and 3.1 %, respectively. The uncertainty analysis was conducted by using the Monte Carlo method to verify the reliability of the built surface roughness model.

      더보기

      참고문헌 (Reference)

      1 X. H. Lu, "Surface roughness prediction model of micro-milling Inconel 718 with consideration of tool wear" 12 (12): 93-108, 2016

      2 J. Yi, "Surface roughness models and their experimental validation in micro milling of 6061-T6 Al alloy by response surface methodology" 1-9, 2015

      3 G. Beruvides, "Surface roughness modeling and optimization of tungsten-copper alloys in micro-milling processes" 86 : 246-252, 2016

      4 M. A. Camara, "State of the art on micro-milling of materials, a review" 28 (28): 673-685, 2012

      5 X. X. Wang, "Research on the prediction model of micro-milling surface roughness" 9 (9): 457-467, 2013

      6 Kivak, "Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts" 50 (50): 19-28, 2014

      7 X. H. Lu, "Modelling and optimization of cutting parameters on surface roughness in micro-milling Inconel 718 using response surface methodology and genetic algorithm" 14 (14): 34-50, 2018

      8 T. Schaller, "Microstructure grooves with a width of less than 50 μm cut with ground hard metal micro end mills" 23 (23): 229-235, 1999

      9 K. Emel, "Micro-milling performance of AISI 304 stainless steel using Taguchi method and fuzzy logic modelling" 27 (27): 817-830, 2016

      10 C. Burlacu, "Mathematical modelling to predict the roughness average in micro milling process" 145 : 072004-, 2016

      1 X. H. Lu, "Surface roughness prediction model of micro-milling Inconel 718 with consideration of tool wear" 12 (12): 93-108, 2016

      2 J. Yi, "Surface roughness models and their experimental validation in micro milling of 6061-T6 Al alloy by response surface methodology" 1-9, 2015

      3 G. Beruvides, "Surface roughness modeling and optimization of tungsten-copper alloys in micro-milling processes" 86 : 246-252, 2016

      4 M. A. Camara, "State of the art on micro-milling of materials, a review" 28 (28): 673-685, 2012

      5 X. X. Wang, "Research on the prediction model of micro-milling surface roughness" 9 (9): 457-467, 2013

      6 Kivak, "Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts" 50 (50): 19-28, 2014

      7 X. H. Lu, "Modelling and optimization of cutting parameters on surface roughness in micro-milling Inconel 718 using response surface methodology and genetic algorithm" 14 (14): 34-50, 2018

      8 T. Schaller, "Microstructure grooves with a width of less than 50 μm cut with ground hard metal micro end mills" 23 (23): 229-235, 1999

      9 K. Emel, "Micro-milling performance of AISI 304 stainless steel using Taguchi method and fuzzy logic modelling" 27 (27): 817-830, 2016

      10 C. Burlacu, "Mathematical modelling to predict the roughness average in micro milling process" 145 : 072004-, 2016

      11 D. C. Montgomery, "Design and Analysis of Experiments, 8th Edition" 32 (32): 8-10, 2013

      12 T. Guo, "Deformation characteristics and mechanical properties of single crystal copper during equal channel angular pressing by route A" 53 (53): 991-1000, 2017

      13 Alexandre Gilbin, "Capability of Tungsten Carbide Micro-mills to Machine Hardened Tool Steel" 한국정밀공학회 14 (14): 23-28, 2013

      14 S. S. Keerthi, "Asymptotic behaviors of support vector machines with gaussian kernel" 15 (15): 1667-1689, 2003

      15 H. Richárd, "Analysis of surface roughness of aluminum alloys fine turned : United phenomenological models and multi-performance optimization" 65 : 181-192, 2015

      16 M. X. Yuan, "A prediction model of surface roughness in micro end milling" 727-728 : 354-357, 2015

      17 H. W. R. Schucany, "A local cross-validation algorithm" 8 (8): 109-117, 1989

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼